
Evolution of Stealth
Packet Filter
Rootkits

Richard Johnson
CanSecWest 2023

whoami
Richard Johnson
Senior Principal Security Researcher, Trellix
Vulnerability Research & Reverse Engineering

Owner, Fuzzing IO
Advanced Fuzzing and Crash Analysis Training

Contact
rjohnson@fuzzing.io
@richinseattle

Shout out to the Trellix Interns!

Kasimir Schulz Andrea Fioraldi
@abraxus7331 @andreafioraldi

mailto:rjohnson@fuzzing.io

My 2022 eBPF Research

Why are we here?

APT in your BPF

https://www.csoonline.com/article/3659802/stealthy-linux-implant-bpfdoor-compromised-
organizations-globally-for-years.html

APT in your BPF

https://www.csoonline.com/article/3659802/stealthy-linux-implant-bpfdoor-compromised-
organizations-globally-for-years.html

APT in your BPF

https://www.csoonline.com/article/3659802/stealthy-linux-implant-bpfdoor-compromised-
organizations-globally-for-years.html

There’s an
APT in Your

Network
Stack

There’s an
APT in Your

Network
Stack

BPF FILTER

BACKDOORS

What’s a BPF

Classic Berkeley Packet Filter – Originally 1980, Linux 1993

“BPF allows a user-space program to attach a filter onto any
socket and allow or disallow certain types of data to come
through the socket.”

setsockopt(sock, SOL_SOCKET, SO_ATTACH_FILTER, &bpf, sizeof(bpf));
setsockopt(sock, SOL_SOCKET, SO_DETACH_FILTER, NULL, 0);
setsockopt(sock, SOL_SOCKET, SO_LOCK_FILTER, &val, sizeof(val));

What’s a BPF

Kernel copies packets
to sk_buf structure
and passes it up the
network stack, calling
the filter when
copying data to the
socket

BPF Filters can inspect
data and metadata but
cannot modify data,
only pass or drop

Extension Description
len skb->len
proto skb->protocol
type skb->pkt_type
poff Payload start offset
ifidx skb->dev->ifindex
nla Netlink attribute of type X with

offset A
nlan Nested Netlink attribute of type

X with offset A
mark skb->mark
queue skb->queue_mapping
hatype skb->dev->type
rxhash skb->hash
cpu raw_smp_processor_id()
vlan_tci skb_vlan_tag_get(skb)
vlan_avail skb_vlan_tag_present(skb)
vlan_tpid skb->vlan_proto
rand prandom_u32()

What’s a BPF

Filters are compiled virtual CPU programs
Programs are assembled and stored in structs

BPF CPU ISA

A 32 bit wide accumulator
X 32 bit wide X register
M[] 16 x 32 bit wide scratch registers

Instructions: load, store, branch, arithmetic, return

What’s a BPF

BPF Filters are most commonly used via libpcap which has its
own builtin compiler that emits BPF program structures

vulndev-lnx:~$ sudo tcpdump -i ens33 "ether[12]==0x800 && ip[23]==6" -d
(000) ldb [12]
(001) jeq #0x800 jt 2 jf 7
(002) ldh [12]
(003) jeq #0x800 jt 4 jf 7
(004) ldb [37]
(005) jeq #0x6 jt 6 jf 7
(006) ret #262144
(007) ret #0

What’s a BPF

BPF Filters are most commonly used via libpcap which has its
own builtin compiler that emits BPF program structures

vulndev-lnx:~$ sudo tcpdump -i ens33 "ether[12]==0x800 && ip[23]==6" -dd
{ 0x30, 0, 0, 0x0000000c },
{ 0x15, 0, 5, 0x00000800 },
{ 0x28, 0, 0, 0x0000000c },
{ 0x15, 0, 3, 0x00000800 },
{ 0x30, 0, 0, 0x00000025 },
{ 0x15, 0, 1, 0x00000006 },
{ 0x6, 0, 0, 0x00040000 },
{ 0x6, 0, 0, 0x00000000 },

• The array of sock_filter structs output by tcpdump can then
be loaded via the setsockopt call shown earlier

What’s a BPF

struct sock_filter { /* Filter block */
__u16 code; /* Actual filter code */
__u8 jt; /* Jump true */
__u8 jf; /* Jump false */
__u32 k; /* Generic multiuse field */

};

struct sock_fprog { /* Required for SO_ATTACH_FILTER. */
unsigned short len;/* Number of filter blocks */
struct sock_filter __user *filter;

};

Network Rootkit Goals

• Connection Initiation
• Passive – sniffing or hooking network traffic

• Bastion / Perimeter hosts
• Internal network pivoting

• Active – beaconing out from network
• Hosts behind perimeter layers needing to reach outside the network

• Communication
• Covert – traffic is undetected

• Encoding, Encapsulation, Steganography
• Secure – data is protected from inspection

• Encryption

Network Rootkit Origins

• Persistence
• ELF infection [see: vx-heavens, tmp.0ut]
• System configuration [crontab, etc]

• Process Infection
• LD_PRELOAD
• ptrace or /proc/pid/mem Code Patching

• Kernel Infection
• Kernel Code Patching [Silvio Cesare, et al]
• Direct Kernel Object Manipulation (DKOM) [KIS, Adore, etc]

Knocking on FX's cDoor

• cD00r (Felix Lindner FX/Phenoelit c.2001) is the first widely
distributed software using BPF for offensive network persistence

• Invented the “port knocking” technique using a non-promiscuous
raw socket to listen for a sequence of packets before opening a
bindshell

/* the code ports.
* These are the 'code ports', which open (when called in the right order) the
* door (read: call the cdr_open_door() function).
* Use the notation below (array) to specify code ports. Terminate the list
* with 0 - otherwise, you really have problems.
*/
#define CDR_PORTS { 200,80,22,53,3,00 }

Knocking on FX's cDoor

• cDoor prepared a filter using libpcap

/* to speed up the capture, we create an filter string to compile.
* For this, we check if the first port is defined and create it's filter,
* then we add the others */

if (cports[0]) {
memset(&portnum,0,6);
sprintf(portnum,"%d",cports[0]);
filter=(char *)smalloc(strlen(CDR_BPF_PORT)+strlen(portnum)+1);
strcpy(filter,CDR_BPF_PORT);
strcat(filter,portnum);

Knocking on FX's cDoor

• cDoor prepared a filter using libpcap

/* open the 'listener' */
if ((cap=pcap_open_live(CDR_INTERFACE,CAPLENGTH,

0, /*not in promiscuous mode*/
0, /*no timeout */
pcap_err))==NULL) {

if (cdr_noise)
fprintf(stderr,"pcap_open_live: %s\n",pcap_err);

exit (0);
}

/* now, compile the filter and assign it to our capture */
if (pcap_compile(cap,&cfilter,filter,0,netmask)!=0) {

And then...

Nation State Backdoors

[Dislaimer: attributions are sourced from third parties]

This Photo by Unknown author is licensed under CC BY-SA.

https://www.reflectionsofthevoid.com/2018/11/links-of-day-08112018-large-scale-study.html
https://creativecommons.org/licenses/by-sa/3.0/

CIA Hive Mind 🖤 BPF

• Hive Backdoor (Linux BPF)

CIA Hive Mind 🖤 BPF

• Hive Backdoor

CIA Hive Mind 🖤 BPF

• Hive Backdoor

CIA Grabs Windows by the Longhorns

• Longhorn aka Lambert malware families are connected to Vault7
leaks
(c.2007)

• Targets Windows

• Includes network
backdoors
• WhiteLambert

• Kernel
• GreyLambert

• libpcap

CIA Grabs Windows by the Longhorns

BPF = Equation Solution

• Bvp47 – First seen in the wild by
Pangu Lab in 2013, was leaked as
part of ShadowBrokers in 2016,
publicly documented in 2022

https://www.pangulab.cn/en/post/the_bvp47_a_top-
tier_backdoor_of_us_nsa_equation_group/

BPF = Equation Solution

• Bvp47 – First seen in the wild by
Pangu Lab in 2013, was leaked as
part of ShadowBrokers in 2016,
publicly documented in 2022

• Bvp47 is a multi-module Linux
rootkit including its own BPF
based network backdoor also
known as dewdrop

https://www.pangulab.cn/en/post/the_bvp47_a_top-
tier_backdoor_of_us_nsa_equation_group/

When NSA Wants a SECONDDATE

https://www.pangulab.cn/files/The_Bvp47_a_top-tier_backdoor_of_us_nsa_equation_group.en.pdf

Dewdrop

“The port knocking tool is extremely flexible and can send all kinds
of packets and payloads. It supports TCP, UDP, ICMP, and besides
raw packets it can produce DNS, SMTP, SIP application payloads.
Can set different flags in TCP packets, for example, send a RST
packet with the port knocking payload. Even has a PIX firewall
bypass (SYN only packet). Pretty much port knocking on steroids.”

https://reverse.put.as/2021/12/17/knock-knock-whos-there/

Dewdrop

Trigger TCP packet is 0x88 bytes

data length [0x88] XOR 0xE6CF

$random XOR command length

$random XOR 0x9D6A

The Duqu2’s Egg Relay

• Duqu 2 (c.2014) is a variant of the original Duqu
and Stuxnet
• Discovered in 2015 by Kaspersky, linked to Unit 8200
• Used 3 O-days, 100 plugins, and a Windows NDIS

driver portserv.sys/termport.sys for passive
network rootkit using a stolen Foxconn certificate

Kaspersky.com

“The philosophy and way of thinking of the Duqu 2.0
group is a generation ahead of anything seen in the
advanced persistent threats world.” - Kaspersky

The Duqu2’s Egg Relay

Duqu2 deployed no system persistence layer on most
machines. Perimeter machines were the only ones infected
with a network backdoor.

“Duqu threat actors install these malicious drivers on firewalls,
gateways or any other servers that have direct Internet access on one
side and corporate network access on other side.

By using them, they can achieve several goals at a time: access internal
infrastructure from the Internet, avoid log records in corporate proxy
servers and maintain a form of persistence”

The Duqu2’s Egg Relay

Duqu2 used the network backdoor to listen for keywords
which activated a proxy function to redirect packets from 443
to services they wanted to target with their 0day.

1. If the driver recognizes the secret keyword “ugly.gorilla1” then all traffic from the attacker’s IP will be
redirected from port 443 (HTTPS) to 445 (SMB)

2. If the driver recognizes the secret keyword “ugly.gorilla2” then all traffic from the attacker’s IP will be
redirected from port 443 (HTTPS) to 3389 (RDP)

3. If the driver recognizes the secret keyword “ugly.gorilla3” then all traffic from the attacker’s IP will be
redirected from port 443 (HTTPS) to 135 (RPC)

4. If the driver recognizes the secret keyword “ugly.gorilla4” then all traffic from the attacker’s IP will be
redirected from port 443 (HTTPS) to 139 (NETBIOS)

5. If the driver recognizes the secret keyword “ugly.gorilla5” then all traffic from the attacker’s IP will be
redirected from port 1723 (PPTP) to 445 (SMB)

6. If the driver recognizes the secret keyword “ugly.gorilla6” then all traffic from the attacker’s IP will be
redirected from port 443 (HTTPS) to 47012 (currently unknown).

Earlier versions used “romanian.antihacker”https://github.com/praetorian-inc/PortBender reimplements this technique

https://github.com/praetorian-inc/PortBender

The Duqu2’s Egg Relay

Infected hosts can be activated over SMB pipes with a special
packet that containing “tttttttttttttttt”
Outbound encoded as SMB/RDP or fake packets to 8.8.8.8

From Turla With Love

• Turla aka Uroburos from 2014
• Russian APT activity, evolved into COMRat

• Uses Windows Transport Device Interface (TDI) on
\Device\Tcp for trigger packets

• Uses Windows Filtering Platform (WPF) hooks to
implement Duqu2 style traffic forwarding

From Turla With Love

• Uses Windows Transport Device Interface (TDI) on
\Device\Tcp for trigger packets

Sum first 8 bytes of packet data
data[9] == sum / 26 + 65
data[10] == 122 - sum % 26

From Turla With Love

• Uses Windows Filtering Platform (WPF) hooks to
implement Duqu2 style traffic forwarding

• Older versions used “0xDEADBEEF” XOR’d + base64 + hash

• Found by PwC in 2021, gained attention in May, 2022

• Targets Linux and Solaris

China Opens the BPFDoor

• Plaintext filter recovered from Solaris sample
• (udp[8:2]=0x7255) or (icmp[8:2]=0x7255) or
(tcp[((tcp[12]&0xf0)>>2):2]=0x5293)

• Filter for IPv4 UDP, TCP or ICMP traffic
• Check first 2 bytes for trigger value

• 0x5293 for TCP
• 0x7255 for UDP and ICMP

• Features
• Bind shell on ports 42391 to 42491
• Reverse shell to an IP address provided in the packet
• Send 0x31 “ping” to the IP address
• Rc4 encrypted tunnel for shells
• Static list of hardcoded command strings or hashes

China Opens the BPFDoor

• Found in November 2021
• Targeting LATAM Finance
• Injects into all processes and uses

BPF filters to drop packets on ports
used by the c2

• Does not have passive activation
• Uses lots of hooks for process and network hiding including

LD_PRELOAD and eBPF uprobes

Symbiote Filter: PRELOADED

• Port knocking packet filter backdoors first seen on Linux in 2001
• Government rootkits with passive backdoors since at least 2007
• Windows backdoors are more sophisticated

• Hooks at various layers in kernel and user
• Semi-complex trigger packets with random values
• Stronger Encryption

• “New” 2022 Linux network backdoors a generation behind
• Limited to only socket filters
• Detectable static byte offsets and trigger keywords
• rc4 encryption at best

• NSA has way better resources than CIA for this work 😃

Summary

Extra Better Packet Filter
Rootkits

There’s an
APT in Your

Network
Stack

There’s an
APT in Your

Network
Stack

eBPF FILTER

BACKDOORS

Life of a Packet

• OSI Layer 1 & 2 are handled by NIC and device driver
• Kernel copies packet from PCI memory to rx_ring queue
• Queues are managed by the Traffic Control QoS layer

• Give certain traffic priority, add metadata to packets

• Netfilter reads packets from queue to apply L3 routing rules
• IP Network Frames are assembled into Packets [tcp, udp, etc]
• Firewall and other filter layers process packets
• Packets are copied to appropriate sockets

What is eBPF

• In December 2014, Linux kernel
3.18 was released with the
addition of the bpf() system call
which implements the eBPF
API

• eBPF extends BPF instructions
to 64bit and adds the concept
of BPF Maps which are arrays
of persistent data structures
that can be shared between
eBPF programs and userspace
daemons

• eBPF extended the original BPF concept to allow users to
write general purpose programs and call out to kernel
provided helper APIs

What is eBPF

Linux eBPF Applications

More projects on https://ebpf.io/projects

Creating eBPF Programs

• eBPF programs can be compiled from C source using LLVM

Creating eBPF Programs

• The resulting output is an ELF object with eBPF bytecode
stored in ELF sections

Creating eBPF Programs

• Here’s an example of a more practical eBPF program for
dropping certain packets

Creating eBPF Programs

• Here’s an example of a more practical eBPF program for
dropping certain packets

eBPF Network Hooks

BPF_PROG_TYPE_SOCKET_FILTER

eBPF Program Types

BPF_PROG_TYPE_SK_SKB

IP ROUTE

QoS Queuing Discipline (qdisc) Filters

BPF_PROG_TYPE_XDP

BPF_PROG_TYPE_SOCKET_FILTER

• Equiv of cBPF
filters

• Read and drop
packets

• Truncate packets
to returned size
value

SEC("socket")
int bpf_prog1(struct __sk_buff *skb)
{

int proto = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol));
int size = ETH_HLEN + sizeof(struct iphdr);

switch (proto) {
case IPPROTO_TCP:

size += sizeof(struct tcphdr);
break;

case IPPROTO_UDP:
size += sizeof(struct udphdr);
break;

default:
size = 0;
break;

}
return size;

}

BPF_PROG_TYPE_SK_SKB

• Packet copied
into SKB buffers

• Metadata added
• Read, Drop,

Redirect

• Cilium uses
SOCKMAP for
Layer 7 policy
enforcement

struct bpf_map_def SEC("maps/sockmap") sock_map = {
.type = BPF_MAP_TYPE_SOCKMAP,
.key_size = sizeof(int),
.value_size = sizeof(unsigned int),
.max_entries = 2,

.pinning = 0,
.namespace = "",

};

SEC("sk/skb/parser/sockmap")
int _prog_parser(struct __sk_buff *skb)
{

bpf_debug("parser\n");
return skb->len;

}

SEC("sk/skb/verdict/sockmap")
int _prog_verdict(struct __sk_buff *skb)
{

bpf_debug("verdict\n");
uint32_t idx = 0;
return bpf_sk_redirect_map(skb, &sock_map, idx, 0);

}

Netfilter

• Netfilter/iptables can be configured using ‘ip route’

Inbound
ip route add 10.10.10.10/32 \

encap bpf in obj BACKDOOR.o section <ELF Section Name> dev veth0

Outbound
ip route add 10.10.10.10/32 \

encap bpf out obj BACKDOOR.o section <ELF Section Name> dev veth0

Transmit
ip route add 10.10.10.10/32 \

encap bpf out obj BACKDOOR.o section <ELF Section Name> dev veth0

Traffic Control (tc)

• Traffic Control is the Linux QoS Subsystem
• Access packets before the IP firewall
• Modify packets on both Ingress and Egress
• Enable a tc qdisc
• Attach eBPF program from ELF section as a classifier

tc qdisc add dev eth0 clsact
tc filter add dev eth0 ingress bpf da obj BACKDOOR.o sec <ELF Section Name>

BPF_PROG_TYPE_XDP

• eXpress Data Path is a newer layer added in 2016
• Most immediate access available. Packet is still in PCI buffer
• Designed for DoS mitigation,

load balancing, newer QoS
• BPF programs can read, drop,

modify, and retransmit

BPF_PROG_TYPE_XDP

• eXpress Data Path is a newer layer added in 2016
• Most immediate access available. Packet is still in PCI buffer
• Designed for DoS mitigation,

load balancing, newer QoS
• BPF programs can read, drop,

modify, and retransmit

Linux
ip link set dev lo \

xdpgeneric obj BACKDOOR.o sec xdp

Windows
netsh.exe ebpf add program \

BACKDOOR.o xdp

eBPF Network Backdoor: Stage 1

• Use XDP filter for lowest level hook
• Use single packet instead of portknocking

• Single packet should be less fingerprintable

• Use packet rewriting and reflection instead of sending new
packets
• TCP will resend hijacked packets

• Packets never reach the kernel processing and are
undetectable on the victim machine via firewalls or network
monitoring tools like tcpdump/wireshark

eBPF Network Backdoor: Stage 1

eBPF Network Backdoor: Stage 1

eBPF Network Backdoor: Stage 1

eBPF Network Backdoor: Stage 1

eBPF Network Backdoor: Stage 1

eBPF Network Backdoor: Stage 1

eBPF Network Backdoor: Stage 1

• After swapping src/dest IP and fixing checksum, response data
from the command is added to the packet and the packet is resent
to the NIC without the kernel processing it

Demo: eBPF
Network Backdoor

Network Obfuscation

• Choose your own trigger packet encoding. It is not helpful to
discuss a specific “best” one here but we can discuss
methods

• In the public rootkits, some are using more sophisticated
checks based on random values + magic values. Try to be
non-deterministic

• Avoid using static offsets in the packets and static
bytes/strings to prevent signature-able packets

Network Obfuscation – Lateral

• With intranet communications, more options are available
• Netspooky showed some interesting techniques for multicast

packets
• Netspooky focused on

packet header encoding
using ethernet dst field

Network Obfuscation – Lateral

• With intranet communications, more options are available
• Netspooky showed some interesting techniques for multicast

packets
• Netspooky focused on

packet header encoding
using ethernet dst field

Network Obfuscation – Lateral

• Another concept for multicast is to use Layer7 encoding

• SSDP NOTIFY Packet

Network Obfuscation – Lateral

• Another concept for multicast is to use Layer7 encoding

Network Obfuscation – Lateral

• Another concept for multicast is to use Layer7 encoding

Network Obfuscation – Lateral

• Another concept for multicast is to use Layer7 encoding

eBPF Payloads

This Photo by Unknown author is licensed under CC BY-SA.

https://www.flickr.com/photos/140988606@N08/27471471821
https://creativecommons.org/licenses/by-sa/3.0/

eBPF Code Hooking Capabilities

• Instrument syscall entry/return
• Instrument function entry/return
• Instrument arbitrary code locations*
• Access register context
• Access function parameters
• Read/Write memory*
• Trace system perf events

*kernel is sandboxed and limited

Full System Access

• libpam backdoor
• Hook libpam and use a magic password for ssh

• Tinyshell
• Rc4 encrypted connect back code with MD5 HMAC
• I have a fork using siphash instead (better for eBPF/kernel code)

• Hook ssh, nginx, or Apache directly
• Use SSL or SSH protocol negotiation as communications layer

• Don’t complete connections to avoid logging

c2

• There are existing frameworks focusing on c2. If you want
more sophistication than the options listed in the previous
slide, you will be running full userland programs and hiding
them using the FS hooking or process infection techniques

eBPF File System Hooking

• File IO Hooking
• eBPF offers direct syscall layer hooking
• Hook getdents / getdents64 to filter enumerating files on disk and

virtual file systems like /proc and /sys/kernel/bpf or /dev/shm

eBPF Capabilities: Process Infection

• Hook ELF linking and loading
• Every dynamic linked process loads libc
• Hook load of libc, replace path with userland rootkit

• Chain loading of libc or embed libc

• Infecting running processes?
• Hook commonly used APIs

• File/Socket I/O
• __get_clocktime or other timer related APIs

• This will get you into system

• Inject ROP Payload

Persistence

• Systemd uses eBPF
• Modify config files to load your filter
• or replace one of the existing ones

• Crontab is everywhere

• In either case, you can hook reads of the files on disk and
return false contents

Concluding Thoughts

Concluding Thoughts

• Nation States and top tier malware campaigns are using passive network
backdoors

• This type of backdoor is widely regarded as most stealthy and can remain
undetected for years

• Several of the existing samples are detectable once you know what to look
for. There is room for improvement.

• eBPF provides a cross platform API with network hooks at several layers for
passive network backdoors

• Red Teams should be using similar tactics to help detection teams prepare to
respond to this class of threats

Questions?

This Photo by Unknown author is licensed under CC BY.

Contact
rjohnson@fuzzing.io
@richinseattle

Slides https://fuzzing.io/cansecwest23.pdf

https://www.flickr.com/photos/136770128@N07/40492737110
https://creativecommons.org/licenses/by/3.0/
mailto:rjohnson@fuzzing.io

	Slide 1: Evolution of Stealth Packet Filter Rootkits
	Slide 2
	Slide 3: My 2022 eBPF Research
	Slide 4: Why are we here?
	Slide 5: APT in your BPF
	Slide 6: APT in your BPF
	Slide 7: APT in your BPF
	Slide 8: There’s an APT in Your Network Stack
	Slide 9: There’s an APT in Your Network Stack
	Slide 10: What’s a BPF
	Slide 11: What’s a BPF
	Slide 12: What’s a BPF
	Slide 13: What’s a BPF
	Slide 14: What’s a BPF
	Slide 15: What’s a BPF
	Slide 16: Network Rootkit Goals
	Slide 17: Network Rootkit Origins
	Slide 18: Knocking on FX's cDoor
	Slide 19: Knocking on FX's cDoor
	Slide 20: Knocking on FX's cDoor
	Slide 21: And then...
	Slide 22: Nation State Backdoors
	Slide 23: CIA Hive Mind 🖤 BPF
	Slide 24: CIA Hive Mind 🖤 BPF
	Slide 25: CIA Hive Mind 🖤 BPF
	Slide 26: CIA Grabs Windows by the Longhorns
	Slide 27: CIA Grabs Windows by the Longhorns
	Slide 28: BPF = Equation Solution
	Slide 29: BPF = Equation Solution
	Slide 30: When NSA Wants a SECONDDATE
	Slide 31: Dewdrop
	Slide 32: Dewdrop
	Slide 33: The Duqu2’s Egg Relay
	Slide 34: The Duqu2’s Egg Relay
	Slide 35: The Duqu2’s Egg Relay
	Slide 36: The Duqu2’s Egg Relay
	Slide 37: From Turla With Love
	Slide 38: From Turla With Love
	Slide 39: From Turla With Love
	Slide 40: China Opens the BPFDoor
	Slide 41: China Opens the BPFDoor
	Slide 42: Symbiote Filter: PRELOADED
	Slide 43: Summary
	Slide 44: Extra Better Packet Filter Rootkits
	Slide 45: There’s an APT in Your Network Stack
	Slide 46: There’s an APT in Your Network Stack
	Slide 47: Life of a Packet
	Slide 48: What is eBPF
	Slide 49: What is eBPF
	Slide 50: Linux eBPF Applications
	Slide 51: Creating eBPF Programs
	Slide 52: Creating eBPF Programs
	Slide 53: Creating eBPF Programs
	Slide 54: Creating eBPF Programs
	Slide 55: eBPF Network Hooks
	Slide 56: BPF_PROG_TYPE_SOCKET_FILTER
	Slide 57: BPF_PROG_TYPE_SK_SKB
	Slide 58: Netfilter
	Slide 59: Traffic Control (tc)
	Slide 60: BPF_PROG_TYPE_XDP
	Slide 61: BPF_PROG_TYPE_XDP
	Slide 62: eBPF Network Backdoor: Stage 1
	Slide 63: eBPF Network Backdoor: Stage 1
	Slide 64: eBPF Network Backdoor: Stage 1
	Slide 65: eBPF Network Backdoor: Stage 1
	Slide 66: eBPF Network Backdoor: Stage 1
	Slide 67: eBPF Network Backdoor: Stage 1
	Slide 68: eBPF Network Backdoor: Stage 1
	Slide 69: eBPF Network Backdoor: Stage 1
	Slide 70: Demo: eBPF Network Backdoor
	Slide 71: Network Obfuscation
	Slide 72: Network Obfuscation – Lateral
	Slide 73: Network Obfuscation – Lateral
	Slide 74: Network Obfuscation – Lateral
	Slide 75: Network Obfuscation – Lateral
	Slide 76: Network Obfuscation – Lateral
	Slide 77: Network Obfuscation – Lateral
	Slide 78: eBPF Payloads
	Slide 79: eBPF Code Hooking Capabilities
	Slide 80: Full System Access
	Slide 81: c2
	Slide 82: eBPF File System Hooking
	Slide 83: eBPF Capabilities: Process Infection
	Slide 84: Persistence
	Slide 85: Concluding Thoughts
	Slide 86: Concluding Thoughts
	Slide 87: Questions?

