
FuzzCon 2020

Lightning in a Bottle
25 Years of Fuzzing

#
#
#
#

FuzzCon 2020

What is Fuzzing?

#
#
#
#

FuzzCon 2020

What is Fuzzing?
Fuzzing is lightning in a bottle,
at least it was for Barton Miller.

#
#
#
#

FuzzCon 2020

Barton Miller - Father of Fuzz

Legend has it, Prof. Miller discovered fuzzing during a lightning storm in 1988

His modem, a 1200 baud variety lacking error correction, began to pick up interference from the

lightning storm, resulting in garbage characters being injected into his command line

Miller took note as his garbled commands sent unexpected input to common utilities and caused them to

crash

Inspired by the storm, Prof. Miller wanted to run an wider experiment so … he assigned his graduate

students an exercise

#
#
#
#

FuzzCon 2020

The Fuzz Generator

October 1988 - Bart Miller assigns “The Fuzz Generator” project

The goal of this project is to evaluate the robustness of various UNIX utility programs

First, you will build a fuzz generator. This is a program that will output a random character stream

Second, you will take the fuzz generator and use it to attack as many UNIX utilities as possible, with the

goal of trying to break them

For the utilities that break, you will try to determine what type of input cause the break

#
#
#
#

FuzzCon 2020

The Fuzz Generator

October 1988 - Bart Miller assigns “The Fuzz Generator” project

●The fuzz generator will generate an output stream of random characters with options for tuning the

output.

❖ only the printable ASCII characters

❖ all ASCII characters

❖ include the null (0 byte) character

❖ generate random length lines (\n terminated strings)

❖ replay characters in file ‘‘name’’ to output

#
#
#
#

FuzzCon 2020

The Fuzz Generator

October 1988 - Bart Miller assigns “The Fuzz Generator” project

The result of this exercise was ‘fuzz’, one of the world’s first random testing tools

fuzz was used to test 90 console utilities in 7 UNIX varieties - it crashed up to a third of them!

The results were published with tools and data in a 1990 paper titled “An Empirical Study of the

Reliability of UNIX Utilities”, coining the term fuzzing in the process.

#
#
#
#

FuzzCon 2020

Fuzzing is Inexpensive
“Our approach is not a substitute for a formal
verification or testing procedures, but rather an
inexpensive mechanism to identify bugs and
increase overall system reliability.”

#
#
#
#

FuzzCon 2020

Fuzz v2

Miller tried again in 1995 with improvements

● X Windows clients

● Network ports

● Memory exhaustion simulation

Crashed as many as 40% of the console utilities and 25% X windows clients

None of the network facing code faulted

#
#
#
#

FuzzCon 2020

Fuzzing is Effective
“Our 1995 study surprised us ... the continued
prevalence of bugs in the basic UNIX utilities seems
a bit disturbing. The simplicity of performing random
testing and its demonstrated effectiveness would
seem to be irresistible to corporate testing groups.”

#
#
#
#

FuzzCon 2020

My Encounter With Fuzzing

My first encounter with fuzzing was around year 2000 as a project with a friend on IRC who suggested

we write an argument variable (argv) fuzzer for setuid binaries.

 There had traditionally been a number of buffer overflows in argument handling and format string

vulnerabilities were a brand new attack vector which was bearing fruit.

This knowledge became shared among hacker circles and it was a common rite of passage after the

typical network scanning tools and log cleaners.

#
#
#
#

FuzzCon 2020

Selectively Random

The random fuzzing technique leveraged by Miller’s students began to evolve to introduce lists of

potentially dangerous input values were injected at random locations in well formed inputs, and

mutational fuzzing was born which continues to be a foundational fuzzing strategy today.

Meanwhile, many took note that the network services seemed impervious to the random testing

attempted by Miller and took a more pragmatic approach - we would need to model protocols and follow

the specification closely to create data that would pass the sanity checks in network facing code.

#
#
#
#

FuzzCon 2020

“Smart” Fuzzers

In 2002-2004 a series of fuzzers were released from different researchers taking a similar approach -

structured generational fuzzing.

These fuzzers were considered “smart” in the sense they are aware of the expected input structure and

these structures were tied to value generators which would create permutations of the expected input

structure with fuzzy values placed at strategic locations.

#
#
#
#

FuzzCon 2020

Fuzzing is Flexible
● Structured binary parsers
● Text based parsers and tokenizers
● Language parsers
● Complex DOM constructions
● System and Library APIs

#
#
#
#

FuzzCon 2020

The Art of Fuzzing

Developing fuzzing test tools is is a trade-off between ease of setup and time investment in building a

complete model of the syntax or interaction logic of a program

Fuzzing interfaces with unstructured inputs will yield limited results

Structured inputs allow for more effective traversal of program states

Defining models of input is tedious and increases the cost of fuzzing

Fuzzing tools should be deployed rapidly and iterated on until the appropriate equilibrium between risk

and assurance is met.

#
#
#
#

FuzzCon 2020

The Art of Fuzzing
The intersection of mutation and structure is where
the art of fuzzing begins

#
#
#
#

FuzzCon 2020

The Art of Harnessing
The most important factor in fuzzing is input
generation. After input generation, it all comes down
to harnessing.

#
#
#
#

FuzzCon 2020

Harnessing: The Art in Fuzzing

Generating useful input is important, but some parsers cannot be penetrated by fuzzing external format

types or protocols due to complexity, compression, consistency checking, or statefulness.

Many parsers implement complex protocols or structured formats that contain sub parsers that can be

attacked directly

A skillful engineer can instrument or interrogate code directly without using external APIs by writing

custom harnesses or hooking existing code.

#
#
#
#

FuzzCon 2020

The Fuzzing Renaissance
Feedback driven fuzzing has achieved new heights
in fuzzing efficacy

#
#
#
#

FuzzCon 2020

Feedback Driven Fuzzing

Feedback driven fuzzing evaluates the effectiveness of the each iteration of fuzzing

The most common feedback signal is new code coverage. Logical blocks of higher level language are

translated to low level basic blocks in code with one or more edges entering or exiting a block

Instrumentation or emulation of the program allows tracking of each edge between basic blocks

#
#
#
#

FuzzCon 2020

Feedback Driven Fuzzing

Feedback may take other forms

● Time spent parsing input

● CPU performance counters
○ instruction count
○ mispredicted branches

● Any other observable side effect that strongly correlates to unique behavior in the target program

#
#
#
#

FuzzCon 2020

American Fuzzy Lop - Zalewski, 2013

Block based code coverage tracking

● Edge transitions are encoded as tuple

and tracked in global map

● Includes coverage and frequency

Simplified genetic algorithm for continual

improvement of input generation

Uses variety of traditional mutation fuzzing

strategies

#
#
#
#

FuzzCon 2020

American Fuzzy Lop

American Fuzzy Lop achieved

many impressive feats in its

first couple years of release.

One striking blog post in 2014

titled “Pulling JPEGs out of

thin air” demonstrated how

AFL could generate valid

JPEG images starting from a

single input string: “hello”

#
#
#
#

FuzzCon 2020

American Fuzzy Lop

Nearly every major browser,

file parser, network server,

and language interpreter has

fallen to the powerful strategy

employed by American Fuzzy

Lop

#
#
#
#

FuzzCon 2020

American Fuzzy Lop

It’s 25 years after Barton Miller’s fuzz, and this is

American Fuzzy Lop playing Super Mario Bros.

A file format has been created to deserialize the possible

input keys (left, right, jump, run)

The X coordinate is tracked as progress

When Mario fails, the progress is checked against

previous inputs and if it is favorable it is kept and further

mutated

#
#
#
#

FuzzCon 2020

Academic Developments
The past 5 years have seen a massive explosion in

academic research expanding upon guided fuzzing

● Alternate feedback mechanisms

● Optimized search strategies

● Code transformation

● Feature extraction

● Taint Analysis

● Custom kernels for fuzzing

#
#
#
#

FuzzCon 2020

Cyber Grand Challenge, 2016

Created by The Defense Advanced Research Projects Agency (DARPA) “in order to develop automatic

defense systems that can discover, prove, and correct software flaws in real-time”

The Cyber Grand Challenge pitted automated bug hunting tools against an unknown array of targets

For the attack engines, all entries used a combination of guided fuzzing and symbolic execution

Symbolic Execution has been used for Automated Test Case Generation, a precise but limited approach

to exercising program logic related to fuzzing

Our hosts, ForAllSecure, had the winning Cyber Grand Challenge entry, Mayhem

#
#
#
#

FuzzCon 2020

Advanced Harnessing

Forking Servers inject a process scheduler into a target, taking advantage of POSIX fork() system call and

copy-on-write for rapid creation of ephemeral test executions

Persistent Fuzzing greatly increases performance and avoids platform constraints around process

creation, memory randomization

Emulated Fuzzing enables targeting of embedded IoT, ICS devices, mobile device platforms, etc

Snapshot Fuzzing allows entire operating systems or processes to be restored to their original memory

contents, eliminating the possibility of side effects and non-determinism in the execution environment

#
#
#
#

FuzzCon 2020

Desirable Fuzzer Features

Flexible input generation algorithms (examples below from radamsa)

● ab: enhance silly issues in ASCII string data handling
● bd: drop a byte
● bf: flip one bit
● bi: insert a random byte
● br: repeat a byte
● bp: permute some bytes
● bei: increment a byte by one
● bed: decrement a byte by one
● ber: swap a byte with a random one

#
#
#
#

FuzzCon 2020

Desirable Fuzzer Features

Flexible input generation algorithms (examples below from radamsa)

● sr: repeat a sequence of bytes

● sd: delete a sequence of bytes
● ld: delete a line
● lr2: duplicate a line
● li: copy a line closeby
● lr: repeat a line
● ls: swap two lines
● lp: swap order of lines
● lis: insert a line from elsewhere

#
#
#
#

FuzzCon 2020

Desirable Fuzzer Features

Flexible input generation algorithms (examples below from radamsa)

● td: delete a node
● tr2: duplicate a node
● tr: repeat a path of the parse tree
● uw: try to make a code point too wide
● ui: insert funny unicode
● num: try to modify a textual number
● xp: try to parse XML and mutate it
● ft: jump to a similar position in block
● fn: likely clone data between similar positions
● fo: fuse previously seen data elsewhere

#
#
#
#

FuzzCon 2020

Desirable Fuzzer Features

Token injection - key words or constants

Optional syntax or interaction logic specification

High performance, minimal overhead feedback

● Code coverage with hashed logging for quick lookups or less invasive instrumentation

#
#
#
#

FuzzCon 2020

Desirable Fuzzer Features

Adaptability

● Flexible harnessing via API level input generation
○ AFL outputs to filesystem or STDIN which can be cumbersome

Corpus building over time

● Generated corpus is a valuable resource that should not be discarded

● Regression tests, starting point for future fuzzing, cross-implementation fuzzing

#
#
#
#

FuzzCon 2020

Desirable Fuzzer Features

Repeatable results

● Random seeds values should be recorded and use procedural algorithms based on the initial seed

● Memory randomization should be avoided through system configuration, persistent fuzzing, or

snapshot fuzzing

● Non-deterministic behavior should be eliminated through harnessing or controlling sources of

non-determinism such as timers, random values, or environmental jitter

#
#
#
#

FuzzCon 2020

Fuzzing in the SDLC
Fuzz now, avoid paying bug bounties later

#
#
#
#

FuzzCon 2020

Fuzzing in the SDLC
Fuzz now, avoid paying bug bounties later

#
#
#
#

FuzzCon 2020

Fuzzing is Software Testing

Fuzzing should be considered as critical to your

Software Development Life Cycle as Unit Testing.

Unit Testing validates a functional specification

Fuzzing validates program safety (within limits)

Like Unit Tests, integrating fuzzing early in the

development process is much cheaper than to do it

retroactively

#
#
#
#

FuzzCon 2020

Fuzzing is Software Testing

Fuzzing enforces defensive programming

Compositional analysis of your software will

determine where the security boundaries lie and

define which interfaces should be fuzzed

#
#
#
#

FuzzCon 2020

Measuring Fuzzing Coverage

Code coverage is the primary measurement of

software unit testing

Not all code interacts with untrusted data. Attack
Surface Analysis aims to identify what code

interacts with user data. We want to measure

coverage against that subset of code.

Attack Surface will be activated through selecting

appropriate inputs

#
#
#
#

FuzzCon 2020

The Fuzzing Process

The APIs that accept untrusted input must be

harnessed for fuzzing

The closer to your APIs, the more effective the

fuzzer will be

Prefer fuzzing individual feature sets over the

entire protocol with a single harness

Fuzzing is a brute force data search, smaller, more

focused input is more efficient

#
#
#
#

FuzzCon 2020

Fuzzing Managed Languages

So far the assumption has been that the target software is

“native code” or code that manually manages memory,

typically written in C/C++

Managed Language Runtimes typically eliminate the bug

classes targeted by bit flipping input mutators

Injection vulnerabilities are most prevalent in managed

language so mutations need to have more semantic language

awareness

#
#
#
#

FuzzCon 2020

Fuzzing Managed Languages

In the simplest case, keywords or tokens can be injected and

sample input formats can be mutated

Usually a grammar based generator will be required

Many extensions for AFL exist for targeting managed

language, typically the goal is to hit language parser bugs or

pass-through APIs that are actually implemented in native

code libraries behind the managed APIs

#
#
#
#

FuzzCon 2020

Fuzzing Managed Languages

#
#
#
#

FuzzCon 2020

Fuzzing in the CICD
Waterfall is dead, software changes rapidly

#
#
#
#

FuzzCon 2020

Software is Constantly Changing

#
#
#
#

FuzzCon 2020

Bugs Exist in New Code

About half of the exploitable vulnerabilities found

in Chrome in 2019 were found in code less than a

year old

40% of OSS-Fuzz bug finds were new check-ins

before code shipped to stable

Specifications rapidly change for the infrastructure

that runs our businesses and I’m sure your

specifications do too

#
#
#
#

FuzzCon 2020

Continuous Fuzzing is Achievable
● Write fuzzers
● Build fuzzers
● Fuzz at scale
● Triage crashes
● Improve fuzzers

#
#
#
#

FuzzCon 2020

LLVM libFuzzer

libFuzzer brings AFL style guided

fuzzing into the compiler toolchain

AFL mutates files, libFuzzer calls a

user supplied callback with mutated

data

This is more suitable for CICD and

converting unit tests into fuzzers

#
#
#
#

FuzzCon 2020

LLVM libFuzzer

libFuzzer brings AFL style guided

fuzzing into the compiler toolchain

AFL mutates files, libFuzzer calls a

user supplied callback with mutated

data

This is more suitable for CICD and

converting unit tests into fuzzers

#
#
#
#

FuzzCon 2020

LLVM Address Sanitizer

Address Sanitizer is a memory

debugger with precise memory

tracking that traps on:

● Out-of-bounds accesses to

heap, stack and globals

● Use-after-free

● Double-free, invalid free

● Use after return/scope

#
#
#
#

FuzzCon 2020

LLVM Address Sanitizer

Address Sanitizer is a memory

debugger with precise memory

tracking that traps on:

● Out-of-bounds accesses to

heap, stack and globals

● Use-after-free

● Double-free, invalid free

● Use after return/scope

#
#
#
#

FuzzCon 2020

libFuzzer + Address Sanitizer

The design of libFuzzer is setup for integration into build systems

Add additional build steps for fuzzing and include in your CI pipeline

libFuzzer terminates when an error is found, which can be appropriate for blocking a code check in

Google will run libFuzzer harnesses for free through the oss-fuzz project
https://google.github.io/oss-fuzz/

The oss-fuzz repo on github is a great reference for writing harnesses

#
#
#
#
https://google.github.io/oss-fuzz/

FuzzCon 2020

Fuzzing Orchestration

The last piece to the puzzle besides fuzzing engines

and harnessing is orchestration

Google and Mozilla have released the platforms

they use to fuzz their browsers and open source

dependencies.

ClusterFuzz from Google also runs oss-fuzz

Mozilla provides FuzzManager, CrashManager,

Avalanche, Grizzly, etc

ClusterFuzz

#
#
#
#

FuzzCon 2020

Desirable CICD Features

● High scalability. Google's cluster runs on over 25,000 machines

● Crash deduplication

● Automatic bug filing and closing for issue trackers

● Test case minimization

● Regression finding through bisection

● Statistics for analyzing fuzzer performance and progress

● Easy to use web interface for management and viewing crashes

● Support for coverage guided fuzzing (e.g. libFuzzer and AFL) and

black box fuzzing.
ClusterFuzz

#
#
#
#

FuzzCon 2020

Commercially Supported Platforms

Recently, commercially supported platforms have

been released

● FuzzBuzz

● FuzzIt

● Microsoft Security Risk Detection

#
#
#
#

FuzzCon 2020

Managing Vulnerability Triage
If fuzzing is successful, then you have another
problem.

#
#
#
#

FuzzCon 2020

Security Automation Generates Data

When deployed effectively, security automation will generate a large amount of data that requires expert

engineering attention

Typically, developers are initially flooded with results when fuzzing first begins. This can create resistance

and should be taken into consideration in late-stage adoption of fuzzing and setting expectations around

remediation

Ideally developers will work with security engineers to iterate on their fuzzing harnesses until they are

adequate and then security engineers will perform initial triage.

#
#
#
#

FuzzCon 2020

Triage Still Requires Manual Review

There are two approaches currently available for automation of triage

Divide and conquer brute force

● Can locate a code check-in that introduced the bug or minimize an input

● Inefficient and imprecise

Dataflow analysis and taint tracking

● Can determine precise instruction flow leading to crash, heuristics can suggest a patch location

● Complex and new technology

#
#
#
#

FuzzCon 2020

Closing Thoughts

Fuzzing is inexpensive, effective, flexible, and scalable

Fuzzing integrates nicely in CICD through compiler supported frameworks
like libFuzzer and oss-fuzz is free

Harnesses should be written by developers alongside unit tests

Orchestration and triage may require custom code & DevOps workflows

#
#
#
#

FuzzCon 2020

Call to Action

Fuzz now, fuzz early

Adopt fuzzing as part of your SDLC and make it as integral as unit testing

Deploy CICD based fuzzing through internal DevOps projects or supported
fuzzing services

Talk to us, let us know how we can help!

#
#
#
#

FuzzCon 2020

Thank You, FuzzCon 2020!

Richard Johnson | rjohnson@fuzzing.io

#
#
#
#

