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 Goal: Exercise target program to achieve 
full coverage of all possible states 
influenced by external input

 Code graph reachability exercise 

 Input interaction with conditional logic in 
program code determines what states you 
can reach 

Automated Test Generation
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 Modern approaches fall into two buckets:
→ Random Testing (Fuzzing)

• Zero-knowledge mutation 
• Syntax model based grammar
• Direct API interrogation

→ Concolic Testing
• Instrumented target program 
• Tracking of dataflow throughout execution
• Observation of program branch logic & constraints 
• Symbolic reasoning about relationship between 

input and code logic 

Automated Testing 
Approaches
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 Advanced Fuzzers derive grammars from well formed 
data samples or are given a manually constructed 
syntax & interaction model that is expressed in a 
higher level grammar

 For automation, syntax is inferred using string 
grouping algorithms such as n-gram 

 A good modern example is Radamsa
→ Supply a corpus of well formed inputs
→ Multiple grammar inference strategies
→ Detection of repeated structures or identification of basic 

types is automatic  

Advanced Fuzzing
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 Unfortunately even the most advanced fuzzers cannot cover 
all possible states because they are unaware of data 
constraints. 

 The below example would require an upper bound of 2^32 
or 4 billion attempts to meet the condition required to 
trigger the crash

 

Limits to Fuzzing

void test(char *buf)
{
    int n=0;
    if(buf[0] == 'b') n++;
    if(buf[1] == 'a') n++;
    if(buf[2] == 'd') n++;
    if(buf[3] == '!') n++;
    if(n==4) {
        crash();
    }
}
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 For anything beyond string grouping algorithms, 
direct instrumentation of the code and observation 
of interaction between data and conditional logic is 
required 

 Early academic work in this area:
→ DART: Directed Automated Random Testing

• 2005 - Patrice Godefroid, et al

→ CUTE: a concolic unit testing engine for C
• 2005 - Sen, Koushik

→ EXE: Automatically Generating Inputs of Death
• 2006 -Dawson Engler

Concolic Testing



Concolic Test Generation: Core 
Concepts
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 Code Coverage
→ Analysis of program runtime to determine 

execution flow
→ Collect the sequence of execution of basic blocks 

and branch edges 

 Several approaches 
→ Native debugger API 
→ CPU Branch Interrupts 
→ Static binary rewriting 
→ Dynamic binary instrumentation 

Code Coverage & Taint 
Analysis
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 Taint Analysis 
→ Analysis of program runtime to determine data 

flow from external input throughout memory 
→ Monitor each instruction for propagation of 

user controlled input from source operands to 
destination operands 

→ Dependency tree is generated  according to 
tainted data flows in memory or CPU registers 

→ Taint analysis is imperfect – propagation rules 
must dictate the level of inferred dataflow that 
is propagated

Code Coverage & Taint 
Analysis
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 JIT modification of binary code
→ As new code blocks are visited or modules are loaded, 

an analysis phase disassembles the binary to identify 
code structure

→ Instructions may be inserted at arbitrary locations 
around or within the disassembled target binary 

→ Modified code is cached and referenced instead of 
original binary

 Skips some problems with static binary rewriting 
and maintains runtime state for conditional 
instrumentation

Dynamic Binary 
Instrumentation
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 Symbolic execution involves computation of a mathematical 
expression that represents the logic within a program. 

 It can be thought of as an algebra designed to express 
computation. 

 

Symbolic Execution

void test(char *buf)
{
    int n = 0;
    if(buf[0] == 'b') n+
+;
    if(buf[1] == 'a') n+
+;
    if(buf[2] == 'd') n+
+;
    if(buf[3] == '!') n+
+;
    if(n==4) {
        crash();
    }
}

(declare-const buf (Array Int Int))
(declare-fun test () Int)
(declare-const n Int)
(assert (= n 0))
(ite (= (select buf 0) 98) (+ n 1) 
0)
(ite (= (select buf 1) 97) (+ n 1) 
0)
(ite (= (select buf 2) 100) (+ n 1) 
0)
(ite (= (select buf 3) 92) (+ n 1) 
0)
(assert (= n 4))
(check-sat)
(get-model) 
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 Symbolic execution involves computation of a mathematical 
expression that represents the logic within a program. 

 It can be thought of as an algebra designed to express 
computation. 

 

Symbolic Execution

void condition(int x)
{

int ret = 0;
if (x > 50)

ret = 1;
else

ret = 2; 
return ret

}

(declare-fun condition () Int)
(declare-const ret Int)
(declare-const x Int)
(assert (=> (>= x 50) (= ret 1)))
(assert (=> (< x 50) (= ret 2)))
(assert (= ret 1))
(check-sat)
(get-model)
---
sat 
(model 

(define-fun x () Int 50) 
(define-fun ret () Int 1) 

)
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 Last year we used Symbolic Execution to 
emulate forward from a crash to determine 
exploitability 

Symbolic Execution

void test_motriage(unsigned int 
*buf)
{
   unsigned int b,x,y;

   b = buf[0];
   x = buf[b+0x11223344];
   y = buf[x];
   exploit_me(1, x, y);
}
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 Last year we used Symbolic Execution to 
emulate forward from a crash to determine 
exploitability 

Symbolic Execution

void exploit_me
   (int depth, 
   unsigned int x, 
   unsigned int y)
{
   int stack[1];
   int b, i;
   b = x & 0xff;
   switch(depth) {
...
   }
   exploit_me(++depth, x>>8, 
y);
}

case 4:
   if(b == 0x44)
      stack[y] = 1;
   return;
case 3:
   if(b != 0x33) y = 0;
   break;
case 2:
   if(b != 0x22) y = 0;
   break;
case 1:
   if(b != 0x11) y = 0;
   break;
default:
   assert(0);
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 Last year we used Symbolic Execution to 
emulate forward from a crash to determine 
exploitability 

 [insert screenshot of crashflow here]

Symbolic Execution
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 Comparisons are done on values to determine 
which branch of code to take:

 We observe these constraints to determine what 
data value ranges allow execution in different paths 

 A code path is determined by collecting a series of 
these constraints which determines the execution 
flow of the program 

Constraint Generation

if (a > b):
block1

else:
block2
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 Against binary targets we need to track flags and 
evaluate the dependent comparison before a jump

 

  This may be done manually or through the use of an IR

Constraint Generation

   0x080483d4 <+0>: push   %ebp
   0x080483d5 <+1>: mov    %esp,%ebp
   0x080483d7 <+3>: and    $0xfffffff0,%esp
   0x080483da <+6>: sub    $0x10,%esp
   0x080483dd <+9>: cmpl   $0x1,0x8(%ebp)
   0x080483e1 <+13>: jle    0x80483f1 <main+29>
   0x080483e3 <+15>: movl   $0x80484d0,(%esp)
   0x080483ea <+22>: call   0x80482f0 <puts@plt>
   0x080483ef <+27>: jmp    0x80483f2 <main+30>
   0x080483f1 <+29>: nop
   0x080483f2 <+30>: leave  
   0x080483f3 <+31>: ret 
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 A formula representing the code path logic is 
generated in a format acceptable to a symbolic 
execution engine

 To explore alternate paths, we invert the 
conditional logic of the last branch and allow the 
solver to generate an example that would match 
the inverted conditional logic

 Iterative use of this algorithm allows us to explore 
a complete program graph 

Constraint Solving
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Test Generation

 Input: ‘bad?’

 Formula generated by symbolic execution:   
→ Φ:= (i0=‘b’) && (i1=‘a’) && (i2=‘d’) && (i3<>‘!’)

 New formulas:
→ Φ0:= (i0=‘b’) && (i1=‘a’) && (i2=‘d’) && (i3=‘!’)

→ Φ1:= (i0=‘b’) && (i1=‘a’) && (i2<>‘d’) && (i3<>‘!’)

→ Φ2:= (i0=‘b’) && (i1<>‘a’) && (i2=‘d’) && (i3<>‘!’)

→ Φ3:= (i0<>‘b’) && (i1=‘a’) && (i2=‘d’) && (i3<>‘!’)
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Test Generation



Microsoft SAGE
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Implementation
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 Generational Search vs DFS
→ DFS or BFS would negate only one of the branches 
→ Generational search negates each condition and solves for each, generating 

many new inputs per symbolic execution phase instead of just one

 Constraint Optimization
→ Constraint Elimination - reduces the size of constraint solver queries by 

removing the constraints which do not share symbolic variables with the 
negated constraint

→ Local constraint Caching - skips a constraint if it has already been added to 
the path constraint 

→ Flip count limit - establishes the maximum number of times a constraint 
generated from a particular program instruction can be flipped

→ Constraint Subsumption - tracks constraints dominated by a specific branch, 
skips identical constraints generated from the same instruction location

Optimizations
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 Thousands of crashes found in the Windows 7 
and Office products – 1/3 of all file fuzzing bugs 
since 2007

 Lessons Learned
→ Vulnerabilities discovered are usually at shallow 

code depths
→ Symbolic Execution state is limited so wrappers 

need to be developed for library code 
→ A small number of generations typically find the 

majority of vulnerabilities 

Results



Moflow::FuzzFlow
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Implementation
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 Tracer
→ Taint tracer from BAP is not optimized
→ For this application, inputs over a few kB are 

problematic
→ PIN is unable to flush single basic block hooks from code 

cache for code coverage hit trace

 Symbolic Execution
→ Slow conversion from BIL to SMTLIB on big traces

 FuzzFlow
→ Libraries need to be wrapped directly
→ We lack most of the optimizations in SAGE such as 

constraint subsumption 

Limitations
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int main(int argc, char *argv[])
{
  char buf[500];
  size_t count;
  fd = open(argv[1], O_RDONLY);
  if(fd == -1) {
    perror("open");
    exit(-1);
  }
  count = read(fd, buf, 500);
  if(count == -1) {
    perror("read");
    exit(-1);
  }
  close(fd);
  test(buf);
  return 0;

}

void crash(){
  int i;
  // Add some basic blocks
  for(i=0;i<10;i++){
    i += 1;
  }
  *(int*)NULL = 0;
}

void test(char * buf)
{
    int n=0;
    if(buf[0] == 'b') n++;
    if(buf[1] == 'a') n++;
    if(buf[2] == 'd') n++;
    if(buf[3] == '!') n++;
    if(n==4){
        crash();
    }
}

Does It Blend?
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Does It Blend?

moflow@ubuntu:~/moflow-bap-0.7/custom_utils/egas$ ./egas -app test/bof1 -seed 
test/input.txt 
Starting program
Thread 0 starting
Opening tainted file: samples/13.sol
Tainting 5 bytes from read at bffafe30
buffer_size: 5, requested length: 5
Taint introduction #0. @bffafe30/5 bytes: file samples/13.sol
adding new mapping from file samples/13.sol to 0 on taint num 1
adding new mapping from file samples/13.sol to 1 on taint num 2
adding new mapping from file samples/13.sol to 2 on taint num 3
adding new mapping from file samples/13.sol to 3 on taint num 4
adding new mapping from file samples/13.sol to 4 on taint num 5
Activating taint analysis 
CRASH! Sample: samples/13.sol saved as crashes/2014-06-20_22:40:10_13.crash
----------STATS----------
% total count desc
68% 13s 9 taint tracing the target (produces .bpt)
16% 3s 14 gathering coverage info
5% 1s 9 symbolic execution
0% 0s 0 .bpt concretization
0% 0s 13 solver interaction
11% 2s 1 unaccounted
-------------------------
elapsed: 19.000000
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Real World Vulnerability 
Discovery
moflow@ubuntu:~/moflow-bap-0.7/custom_utils/egas$ ./egas -app /home/moflow/graphite2-
1.2.3/tests/comparerenderer/comparerenderer -seed /home/moflow/graphite2-
1.2.3/tests/fonts/tiny.ttf -fmt "-t /home/moflow/graphite2-
1.2.3/tests/texts/udhr_nep.txt -s 12 -f %s -n“

Breakpoint 1, _IO_fread (buf=0x0, size=1, count=3758096384, fp=0x8053230) at 
iofread.c:37
37  in iofread.c
(gdb) bt
#0  _IO_fread (buf=0x0, size=1, count=3758096384, fp=0x8053230) at iofread.c:37
#1  0x4003a8ca in graphite2::FileFace::get_table_fn(void const*, unsigned int, unsigned 
int*) ()
   from /home/moflow/graphite2-1.2.3/src/libgraphite2.so.3
#2  0x4002e8e5 in graphite2::Face::Table::Table(graphite2::Face const&, 
graphite2::TtfUtil::Tag) ()
   from /home/moflow/graphite2-1.2.3/src/libgraphite2.so.3
#3  0x4002858a in (anonymous namespace)::load_face(graphite2::Face&, unsigned int) ()
   from /home/moflow/graphite2-1.2.3/src/libgraphite2.so.3
#4  0x40028695 in gr_make_face_with_ops () from /home/moflow/graphite2-
1.2.3/src/libgraphite2.so.3
#5  0x40028aac in gr_make_file_face () from /home/moflow/graphite2-
1.2.3/src/libgraphite2.so.3
#6  0x0804d56d in Gr2Face::Gr2Face(char const*, int, std::string const&, bool) ()
#7  0x0804b664 in main ()
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Real World Vulnerability 
Discovery
const void *FileFace::get_table_fn(const void* appFaceHandle, unsigned int name, size_t 
*len)
{
    if (appFaceHandle == 0) return 0;
    const FileFace & file_face = *static_cast<const FileFace *>(appFaceHandle);
    void *tbl;
    size_t tbl_offset, tbl_len;
    if (!TtfUtil::GetTableInfo(name, file_face._header_tbl, 
                               file_face._table_dir, tbl_offset, tbl_len))
        return 0;

    if (tbl_offset + tbl_len > file_face._file_len
            || fseek(file_face._file, tbl_offset, SEEK_SET) != 0)
        return 0;

    tbl = malloc(tbl_len);
    if (fread(tbl, 1, tbl_len, file_face._file) != tbl_len)
    {
        free(tbl);
        return 0;
    }

    if (len) *len = tbl_len;
    return tbl;
}



Binary Differencing
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 In 2004, Halvar was the first to apply isomorphic 
graph comparison to the problem of binary program 
differencing  

 The primary class of vulnerabilities at the time were 
Integer Overflows 
→ “Integer overflows are heavily represented in OS vendor 

advisories, rising to number 2 in 2006”
http://cwe.mitre.org/documents/vuln-trends/index.html

→ Integer Overflows are localized vulnerabilities that result 
in array indexing or heap allocation size miscalculations 

 Many vulnerabilities were targeting file formats 
such a Microsoft Office

The Good Old Days 

http://cwe.mitre.org/documents/vuln-trends/index.html
http://cwe.mitre.org/documents/vuln-trends/index.html
http://cwe.mitre.org/documents/vuln-trends/index.html
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 Last update for the only commercialized BinDiff tool 
(Zynamics BinDiff) was in 2011

 The majority of vulnerabilities being patched by 
Microsoft are use-after-free bugs in Internet 
Explorer which has a high degree of separation 
between the root cause that gets patched and the 
actual code path that can trigger the bug leading to 
an exploitable condition
→ First added to CWE in 2008, now dominates as a 

vulnerability class in web-browsers and document 
parsers

BinDiff in 2014
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Inline Bounds Checking
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Use-After-Free
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 Hash Matching (bytes/names)

 MD index matching (flowgraph/callgraph, 
up/down)

 Instruction count

 Address sequence

 String references

 Loop count

 Call sequence

Function Matching
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 Edges Prime Product

 Hash/Prime

 MD index (flowgraph/callgraph, up/down)

 Loop entry

 Entry/Exit point

 Jump sequence

Basic Block Matching
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 Mismatched functions
→ Some functions are identical in both binaries, 

but mismatched by the differ

 Assembly refactoring
→ Some functions are semantically identical in 

both binaries, but some assembly instructions 
have changed/moved

 Little to no context
→ Functions are given a similarity rating, but no 

potential indicators of security-related additions

Practical Problems
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 Compiler optimizations are not handled

 Chunked functions are not handled

 BinDiff heuristics are not tunable / configurable

 IDA misidentifies data as code

 UAF vulnerabilities are hard to reverse engineer 
→ The DOM is massive and interactions between 

objects are not defined
→ The patches are typically simple reference counting 

patches (add missing calls to AddRef)

Practical Problems



43

Mismatched Functions
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 Our solution is to post-process the 
database generated from BinDiff 

 We augment the existing database by 
performing further analysis with IDApython 
scripts  

 New tables are added to supplement the 
existing information

AutoDiff
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 Features
→ Instruction counting (including chunked 

function)
→ Instructions added/removed from each 

function
→ IntSafe library awareness 
→ Filtering of innocuous / superfluous changes
→ Filtering of changes without a security impact

• Example: new ‘ret’ instructions generated by 
compiler

→ Mnemonic list comparison
• To determine when register substitution is the only 

change

AutoDiff
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 MS13-097 – ieinstal.dll: 19% reduction

Results

=======================================================

=                AutoDiff / Statistics                =

=======================================================

Number of changed functions declared by BinDiff : 179

Number of functions filtered out by Sanitizer   : 26

Number of functions contain "IntSafe patch"     : 1

Number of functions ReMatched                   : 7

Number of functions still left to analysis      : 145
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 MS14-017 – wordcnv.dll: 76% reduction

Results

=======================================================

=                AutoDiff / Statistics                =

=======================================================

Number of changed functions declared by BinDiff : 55

Number of functions filtered out by Sanitizer   : 0

Number of functions contain "IntSafe patch"     : 0

Number of functions ReMatched                   : 42

Number of functions still left to analysis      : 13
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 MS14-035 – urlmon.dll: 29% reduction

Results

=======================================================

=                AutoDiff / Statistics                =

=======================================================

Number of changed functions declared by BinDiff : 31

Number of functions filtered out by Sanitizer   : 9

Number of functions contain "IntSafe patch"     : 0

Number of functions ReMatched                   : 0

Number of functions still left to analysis      : 22
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 MS14-035 – mshtml.dll: 21% reduction

Results

=======================================================

=                AutoDiff / Statistics                =

=======================================================

Number of changed functions declared by BinDiff : 543

Number of functions filtered out by Sanitizer   : 56

Number of functions contain "IntSafe patch"     : 0

Number of functions ReMatched                   : 61

Number of functions still left to analysis      : 426
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 Adobe CVE-2014-0497: 87% reduction

Results

=======================================================

=                AutoDiff / Statistics                =

=======================================================

Number of changed functions declared by BinDiff : 1118

Number of functions filtered out by Sanitizer   : 975

Number of functions contain "IntSafe patch"     : 0

Number of functions ReMatched                   : 0

Number of functions still left to analysis      : 143



Semantic Difference Engine
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 Reassignment of registers while 
maintaining the same semantics 

 Inversion of branch logic 
→ such as jge -> jl

 Using more optimized assembler 
instructions that are semantically 
equivalent 

BinDiff Problem Areas
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 We've shown success using symbolic 
execution to analyze code paths to 
generate inputs 

 We should be able to ask a solver to tell us 
if two sets of code are equivalent 

 In last year's presentation we showed an 
example of exactly this
→ Is “add eax, ebx” 

equivalent to this code:

The Idea

 add eax, ebx
 xor ebx, ebx
 sub ecx, 0x123
 setz bl
 add eax, ebx



54

The Idea

 ASSERT( 0bin1 = (LET initial_EBX_77_0 = R_EBX_6 IN
(LET initial_EAX_78_1 = R_EAX_5 IN
(LET R_EAX_80_2 = BVPLUS(32, R_EAX_5,R_EBX_6) IN
(LET R_ECX_117_3 = BVSUB(32, R_ECX_7,0hex00000123) 
IN
(LET R_ZF_144_4 = IF (0hex00000000=R_ECX_117_3) 
THEN 0bin1 ELSE 0bin0 ENDIF IN
(LET R_EAX_149_5 = BVPLUS(32, R_EAX_80_2, 
(0bin0000000000000000000000000000000 @ 
R_ZF_144_4)) IN
(LET final_EAX_180_6 = R_EAX_149_5 IN
IF (NOT(final_EAX_180_6=BVPLUS(32, 
initial_EAX_78_1,initial_EBX_77_0))) THEN
);
QUERY(FALSE);
COUNTEREXAMPLE;

add eax, ebx
xor ebx, ebx
sub ecx, 0x123 
 
setz bl
add eax, ebx

Model:
R_ECX_7 -> 0x123
Solve result: Invalid
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 Strategy would be to mark function 
parameters as symbolic and discover each 
path constraint to solve for inputs that would 
reach all paths

 At termination of each path the resulting CPU 
state and variable values should be identical

 Unfortunately this led to a false impression of 
the feasibility of this approach 

The Idea
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 Low level IR is tied to a memory and 
register model 

 This level of abstraction does not 
sufficiently alias references to the same 
memory 

 At minimum private symbol information 
would be needed to abstract beyond the 
memory addresses so we could manually 
match the values 

 Decompilation would be a better first step 
towards this strategy, but symbol names 
are not guaranteed to match 

The Reality
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 David Ramos and Dawson Engler published 
"Practical, low-effort equivalence verification of 
real code" which shows a technique for 
performing a semantic equivalence test against 
source code using a modified version of KLEE 

 Original application was for program verification 
of new implementations vs reference 
implementations, our problem is a subset of this

 Turns out the approach is nearly identical but 
works on a higher level of abstraction 

A Practical Approach
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 Code is compiled with symbol information using KLEE/LLVM

 A test harness is linked against each of the two functions to be 
compared 

 The harness marks each parameter of the two functions as 
symbolic 

 If input parameters are dereferenced as pointers, memory is lazily 
allocated as symbolic values 

 Symbolically executes each function for each discovered 
constraint

 At the end of execution, KLEE traverses each memory location 
and solves for equivalent values at each location

 On failure of this check, a concrete input is generated that can 
prove the functions are different, else they've been proven equal 

A Practical Approach
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 The ability to alias memory references 
through the use of symbol information is 
the crucial missing piece of the puzzle for 
our approach 

 There are additional difficulties with 
reference tracking, object comparison for 
passed parameters or return values, as 
well as overlapping memory references 

 They explicitly specify that inline 
assembler is not handled due to their 
reliance on symbol information 

Where to Next



Conclusions
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 Sourcefire VulnDev Team
→ Richard Johnson

• rjohnson@sourcefire.com 
• @richinseattle

→ Ryan Pentney 
→ Marcin Noga
→ Yves Younan
→ Pawel Janic (emeritus)

→ Code release will be announced on 
• http://vrt-blog.snort.org/

Thank You!

mailto:rjohnson@sourcefire.com
http://vrt-blog.snort.org/
http://vrt-blog.snort.org/
http://vrt-blog.snort.org/
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