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Abstract

A recurring problem in security is reverse engineering
binary code to recover high-level language data abstrac-
tions and types. High-level programming languages have
data abstractions such as buffers, structures, and local vari-
ables that all help programmers and program analyses rea-
son about programs in a scalable manner. During compi-
lation, these abstractions are removed as code is translated
down to operations on registers and one globally addressed
memory region. Reverse engineering consists of “undoing”
the compilation to recover high-level information so that
programmers, security professionals, and analyses can all
more easily reason about the binary code.

In this paper we develop novel techniques for reverse
engineering data type abstractions from binary programs.
At the heart of our approach is a novel type reconstruction
system based upon binary code analysis. Our techniques
and system can be applied as part of both static or dynamic
analysis, thus are extensible to a large number of security
settings. Our results on 87 programs show that TIE is both
more accurate and more precise at recovering high-level
types than existing mechanisms.

1 Introduction

Reverse engineering binary programs to recover high-
level program data abstractions is a recurring step in many
security applications and settings. For example, fuzzing,
COTS software understanding, and binary program analy-
sis all benefit from the ability to recover abstractions such
as buffers, structures, unions, pointers, and local variables,
as well as their types. Reverse engineering is necessary be-
cause these abstractions are removed, and potentially com-
pletely obliterated, as code is translated down to operations
on registers and one globally addressed memory region.

Reverse engineering data abstractions involves two
tasks. The first task is variable recovery, which identifies
high-level variables from the low-level code. For example,

consider reverse engineering the binary code shown in Fig-
ure 1(b) (where source operands come first), compiled from
the C code in Figure 1(a). In the first step, variable recov-
ery should infer that (at least) two parameters are passed
and that the function has one local variable. We recover the
information in the typical way by looking at typical access
patterns, e.g., there are two parameters because parameters
are accessed via ebp offsets and there are two unique such
offsets (0xc and 0x8).

The type recovery task, which gives a high-level type to
each variable, is more challenging. Type recovery is chal-
lenging because high-level types are typically thrown away
by the compiler early on in the compilation process. Within
the compiled code itself we have byte-addressable memory
and registers. For example, if a variable is put into eax, it
is easy to conclude that it is of a type compatible with 32-bit
register, but difficult to infer high-level types such as signed
integers, pointers, unions, and structures.

Current solutions to type recovery take either a dynamic
approach, which results in poor program coverage, or use
unprincipled heuristics, which often given incorrect results.
Current static-based tools typically employ some knowl-
edge about well-known function prototypes to infer param-
eters, and then use proprietary heuristics that seem to guess
the type of remaining variables such as locals. For exam-
ple, staple security tools such as the IDA-Pro disassem-
bler [2] use proprietary heuristics that are often widely inac-
curate, e.g., Figure 1(e) shows that Hex-rays infers both the
unsigned int and unsigned int * as int. For
example, the Hex-rays default action seems to be to report
an identified variable as a signed integer.

The research community has developed more principled
algorithms such as the REWARDS system [12], but has lim-
ited their focus to a single path executed using dynamic
analysis. The focus on dynamic analysis is due to the per-
ceived difficulty of general type inference over programs
with control flow [12]. In this line of work types are inferred
by propagating information from executed “type sinks”,
which are calls to functions with known type signatures. For
example, if a program calls strlen with argument a, we



unsigned int foo(char *buf,
unsigned int *out)

{
unsigned int c;
c = 0;
if (buf) {

*out = strlen(buf);
}
if (*out) {
c = *out - 1;

}
return c;

}

push %ebp
mov %esp,%ebp
sub $0x28,%esp
movl $0x0,-0xc(%ebp)
cmpl $0x0,0x8(%ebp)
je 8048442 <foo+0x23>
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 804831c <strlen@plt>
mov 0xc(%ebp),%edx
mov %eax,(%edx)
mov 0xc(%ebp),%eax
mov (%eax),%eax
test %eax,%eax
je 8048456 <foo+0x37>
mov 0xc(%ebp),%eax
mov (%eax),%eax
sub $0x1,%eax
mov %eax,-0xc(%ebp)
mov -0xc(%ebp),%eax
leave
ret

push %ebp
mov %esp,%ebp
sub $0x18,%esp
movl $0x0,-0x4(%ebp)
cmpl $0x0,0x8(%ebp)
je 0x0000000008048402
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x00000000080482d8
mov %eax,%edx
mov 0xc(%ebp),%eax
mov %edx,(%eax)
mov 0xc(%ebp),%eax
mov (%eax),%eax
test %eax,%eax
je 0x0000000008048416
mov 0xc(%ebp),%eax
mov (%eax),%eax
sub $0x1,%eax
mov %eax,-0x4(%ebp)
mov -0x4(%ebp),%eax
leave
ret

push %ebp
mov %esp,%ebp
sub $0x18,%esp
movl $0x0,-0x4(%ebp)
cmpl $0x0,0x8(%ebp)
je 0x0000000008048402
mov 0xc(%ebp),%eax
mov (%eax),%eax
test %eax,%eax
je 0x0000000008048416
mov -0x4(%ebp),%eax
leave
ret

(a) Source code (b) Disassembled code
(c) Trace1 (buf = “test”, *out
= 1)

(d) Trace2 (buf = Null, *out =
0)

Variable Hex-Rays REWARDS(Trace1) REWARDS(Trace2) TIE
buf (char*) char * char * 32-bit data char *

out (unsigned int*) int unsigned int * pointer unsigned int *
c (unsigned int) int unsigned int 32-bit data unsigned int

(e) Inferred types

Figure 1. Example of binary programs and inferred types.

can infer that a has type const char * from strlen’s
type signature. If the program then executes a = b, we can
infer b has the same type.

Unfortunately, dynamic analysis systems such as RE-
WARDS are fundamentally limited because they cannot
handle control flow. As a result, these approaches cannot
be generalized to static analysis, e.g., as commonly encoun-
tered in practice. Further, these approaches cannot be gener-
alized over multiple dynamic runs since that would require
control flow analysis, which by definition is a static analy-
sis. For example, Figure 1(c,d,e) shows the output of RE-
WARDS on two inputs, which results in two different and
incompatible sets of results which dynamic systems alone
cannot resolve.

In this paper, we propose a principled inference-based
approach to data abstraction reverse engineering. The goal
of our approach is to reverse engineering as much as we can
infer from the binary code, but never more by simply guess-
ing. Our techniques handle control flow, thus can be applied
in both static and dynamic analysis settings. We implement
our techniques in a system called TIE (Type Inference on
Executables).

The core of TIE is a novel type reconstruction approach
based upon binary code analysis for typing recovered vari-
ables. At a high level, type reconstruction (sometimes
called type inference) uses hints provided by how code is
used to infer what type it must be. For example, if the
signed flag is checked after an arithmetic operation, we can
infer both operands are signed integers. Type reconstruction
builds a set of formulas based upon these hints. The formu-
las are solved to infer a specific type for variables that is

consistent with the way the code is actually used. Our im-
plementation can perform both intra- and inter-procedural
analysis. Figure 1 shows TIE’s approach correctly infering
the types of the running example.

We evaluate TIE against two state-of-the-art compet-
ing approaches: the Hex-rays decompiler [2] and the RE-
WARDS [12] system. We propose two metrics for reverse
engineering algorithms: how conservative they are at giving
a type the correct term, and how precise they are in that we
want terms to be typed with as specific a type as possible.
We show TIE is significantly more conservative and precise
than previous approaches on a test suite of 87 programs.

Contributions. Specifically, our contributions are:

• A novel type inference system for reverse engineering
high-level types given only the low-level code. The
process of type inference is well-defined and rooted
in type reconstruction theory. In addition, our type-
inference approach is based upon how the binary code
is actually used, which leads to a more conservative
type (the inferred type is less often completely incor-
rect) and more precise (the inferred type is specific to
the original source code type).
• An end-to-end system approach that takes in binary

code and outputs C types. All our techniques handle
control flow, thus can be applied in both the static and
dynamic setting unlike previously demonstrated work.
• We evaluate our approach on 87 programs from
coreutils. We evaluate our approach against RE-
WARDS [12] and the Hex-rays decompiler. We show
that TIE is more conservative and up to 45% more
precise than existing approaches. We note that pre-
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vious work has considered a type-inference approach
impractical [12]; our results challenge that notion.

2 Background

In this section we review background material in sub-
typing, typing judgements, and lattice theory used by TIE.
A more extensive explanation of subtyping can be found in
programming language textbooks such as Pierce [17].
Inference Rules. We specify typing rules as inference rules
of the form:

P1 P2 ... Pn
C

The top of the inference rule bar is the premises P1, P2,
etc. If all premises on top of the bar are satisfied, then we
can conclude the statements below the bar C. If there are
no premises, then the rule is axiomatic. Inference rules not
only provide a formal compact notation for single-step in-
ference, but also implicitly specify an inference algorithm
by recursively applying rules on premises until an axiom is
reached.
Typing. Every term t, whether it be a variable, value, or ex-
pression, has a type T . The types of terms are specified via
inference rules, where the type of the term is the conclusion
given that the sub-terms type as specified by the premise. In
order to make sure variables are typed consistently, we also
include a context that maps variables to their types in rules,
denoted as Γ by tradition. The type of a term is denoted
Γ ` t : T , which can be read as “t has type T under context
Γ”.

For example, when a variable x is declared as an int, Γ
would be updated to include a new binding x : int. Later
on if we want to find the type of x, we simply need to look
it up in Γ, denoted as:

x : int ∈ Γ
Γ ` x : int

The typing of expressions is performed by recursively typ-
ing each sub-expression. For example, the type of the ex-
pression x+y would be inferred as int when x : int ∈ Γ
and y : int ∈ Γ. In C, we would infer the same expression
has type float when x, y : float ∈ Γ since the plus
(“+”) function accepts both floats and ints as arguments.
Subtyping. A type T1 is a subtype of T2, written as T1 <:
T2, iff any term of type T1 can be safely used in a context
where a term of type T2 is expected. The subtype relation
is reflexive (any type is a subtype of itself) and transitive
(if T1 <: T2 and T2 <: T3 then T1 <: T3). A subtype
relation T1 <: T2 may also be written as T2 :> T1; the two
representations are interchangeable.

Subtyping and typing judgements are bridged by the sub-
sumption rule:

Γ ` t : S S <: T
Γ ` t : T

This rule says that with the current typing of variables in Γ,
term t has type T when i) we can infer that term t has type
S, and ii) type S is a subtype of type T .

Subtyping is extended to records, function arguments,
and so on in the obvious way. For example, the rule for
subtyping record fields (i.e., C structures) where each of the
n fields is labeled li is:

for each i Si <: Ti

{li : Si∈1..n
i } <: {li : T i∈1..n

i }

This rule says something very simple: if the record field li
has type Si, and Si <: Ti, then any time we want we can
also conclude that li has type Ti. In addition, subtyping is
applied to function types, T1 → T2, where T1 is the argu-
ment type and T2 is the result type. The rule for subtyping
function types is:

T1 <: S1 S2 <: T2
S1 → S2 <: T1 → T2

When two function types are in a subtype relationship, the
result type is covariant (i.e, S2 <: T2) while the argument
type is contravariant (i.e, T1 <: S1).

Lattices. A lattice is a partial order among the values in a
domain in which any two elements have an upper and lower
bound. If the lattice is bounded, the elements of the lowest
and the highest order are > and ⊥, respectively. Lattices
define two operations: the least upper bound, denoted by
the “join” operator t, and the greatest lower bound, denoted
by the “meet” operator u.

3 TIE Overview

TIE is an end-to-end system for data abstraction reverse
engineering. The overall flow and components in TIE are
shown in Figure 2. In this section we describe the overall
work-flow of TIE, and then give an example of the steps on
our running example.

Lifting to BIL. TIE begins with the binary code we wish
to reverse engineer. TIE uses our binary analysis platform,
called BAP, to lift the binary code to a binary analysis lan-
guage called BIL. The BIL code provides low-level typing
for all registers and memory cells, e.g., a value loaded into
eax has type reg32 t since eax is a 32-bit long regis-
ter. BAP considers two possible analysis scenarios: a dy-
namic analysis scenario and a static analysis scenario. In
the static analysis scenario, we disassemble the binary and
identify functions using existing heuristics, e.g., [11]. In
the dynamic analysis scenario, we run the program within
a dynamic analysis infrastructure and output the list of in-
structions as they are executed. In both cases, the output
is an assembly program: for static we have the program,
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Figure 2. TIE approach for type inference in binary code

and for dynamic analysis we have the single path actually
executed, which is then lifted to BIL via a syntax-directed
translation. Subsequent analysis is performed on BIL while
maintaining a mapping to the original assembly so that we
can report final results in terms of the original assembly.

Variable Recovery. The variable recovery phase takes the
BIL code produced by the pre-processor as input. The
variable recovery step runs our DVSA algorithm to infer
high-level variable locations. DVSA infers variables by an-
alyzing access patterns in memory. For example, an ac-
cess to ebp+0xc is a passed parameter since ebp is the
base parameter and positive offsets are used for parameters.
Our algorithm for variable site recovery builds conceptually
upon value set analysis (VSA) which determines the possi-
ble range of values that may be held in a register [5]. We
also return a VSA context which is used during the final
inference phase to determine aliasing and reuse stack slots
(§ 6.3.5).

Type Reconstruction. The variables recovered by DVSA
are passed to our type reconstruction algorithm, along with
the BIL code. Type reconstruction consists of three steps:

Step 1: Assign Type Variables. TIE assigns each variable
output from DVSA and all program terms a type vari-
able τt, representing an unknown type for term t.

Step 2: Constraint Generation. TIE generates con-
straints on the type variables based upon how the
variable is used, e.g., if a variable is used as part of
signed division /s, we add the constraint that τt must
be a signed type. One of our main contributions is
that the constraint system can be solved and lead to
accurate and conservative results.

Step 3: Constraint Solving. TIE solves the constraints on
each type variable τ to find the most precise yet conser-
vative type. Conservative means we do not infer types
that cannot be supported by the code, e.g., an unref-
erenced variable loaded into eax but never used will
have type reg32 t since that is the most informative
type possible to infer from the code. Precision is a
metric for how close our inferred type is to the origi-
nal type, e.g., if the variable was originally a C int,
the most precise type we could infer would be an int,

a slightly less precise type would be “the variable is a
32-bit number”, and the least precise is we could infer
nothing at all.

The output of type reconstruction is a type in our type
system for each recovered variable. Our type system makes
heavy use of sub-typing to model the polymorphism in as-
sembly instructions. For example, the add instruction can
be used to add two numbers, but also to add a number and a
pointer. We use sub-typing to bound what we infer, e.g., for
add the arguments are either two numbers (either signed or
unsigned) or a pointer and a number.

The types we infer are within the TIE type system. In
order to output C types we translate TIE types into C. The
benefits of this design are that TIE can be retargetted to out-
put types for other similar languages by only retargetting
the translator component, and that we are not restricted to
C’s informal and sometimes wacky type system during type
inference itself.

3.1 Example

Figure 3 shows the TIE analysis steps applied to the run-
ning example from Figure 1. The function foo in Figure 3
has two arguments and one local variables. We perform
static analysis in the example. Figure 3 (a) shows the BIL
raised from the binary for foo (BIL is explained in §4.2).
The bold texts consists of annotations indicating the assem-
bly addresses and instructions.

The next step is our DVSA to recover local variables.
Figure 3 (b) shows the result of the analysis. The output is
a list of identified variables along with the location of each
variable in memory (expressed as an SI range). Two vari-
ables that reference the same memory location (i.e., have
the same SI) are identical if they always operate on the
same SSA memory instance, else we consider them possi-
ble places for stack slot reuse of two different variables.

Type inference takes the variables and first assigns a type
variable to every BIL program term. We denote by τv the
type variable for a variable v. Note that the type variable
for memory is a record, thus τMem1 .[a] represents the type
variable at address a in memory Mem1. We then analyze
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- addr 0x804841f @asm ”push %ebp”
1 t1 = esp0
2 esp1 = esp0 − 4

3 Mem1 = store(Mem0, t1, ebp0, 0, reg32 t)

- addr 0x8048420 @asm ”mov %esp,%ebp”
4 ebp1 = esp1
- addr 0x8048422 @asm ”sub $0x28,%esp”
5 esp2 = esp1 −32 40

- addr 0x8048425 @asm ”movl $0x0,-0xc(%ebp)”
6 t2 = ebp1 +32 (−12)

7 Mem2 = store(Mem1, t2, 0x0, 0, reg32 t)

- addr 0x804842c @asm ”cmpl $0x0,0x8(%ebp)”
8 t3 = ebp1 +32 8

9 t4 = load(Mem2, t3, 0, reg32 t)

10 z1 = (t4 = 0)

- addr 0x8048430 @asm ”je 0x0000000008048442”
11 if z1 then goto 0x8048442 else goto 0x8048432

- addr 0x8048432 @asm ”mov 0x8(%ebp),%eax”
12 t5 = ebp1 +32 8

13 eax1 = load(Mem2, t5, 0, reg32 t)

- addr 0x8048435 @asm ”mov %eax,(%esp)”
14 t6 = esp2
15 Mem3 = store(Mem2, t6, eax1, 0, reg32 t)

- addr 0x8048438 @asm ”call 0x000000000804831c”
16 call(0x804831c,Mem3, Reg)

- addr 0x804843d @asm ”mov 0xc(%ebp),%edx”
17 t7 = ebp1 +32 12

18 edx1 = load(Mem3, t7, 0, reg32 t)

- addr 0x8048440 @asm ”mov %eax,(%edx)”
19 t8 = edx1
20 Mem4 = store(Mem3, t8, eax1, 0, reg32 t)

- addr 0x8048442 @asm ”mov 0xc(%ebp),%eax”
21 Mem5 = Φ(Mem2,Mem4)

22 t9 = ebp1 +32 12

23 eax3 = load(Mem5, t9, 0, reg32 t)

- addr 0x8048435 @asm ”mov (%eax),%eax”
24 t10 = eax3
25 eax4 = load(Mem5, t10, 0, reg32 t)

- addr 0x8048447 @asm ”test %eax,%eax”
26 z2 = (eax4 = 0)

- addr 0x8048449 @asm ”je 0x0000000008048456”
27 if z2 then goto 0x8048456 else goto 0x804844b

- addr 0x804844b @asm ”mov 0xc(%ebp),%eax”
28 t11 = ebp1 +32 12

29 eax5 = load(Mem5, t11, 0, reg32 t)

- addr 0x804844e @asm ”mov (%eax),%eax”
30 t12 = eax5
31 eax6 = load(Mem5, t12, 0, reg32 t)

- addr 0x8048450 @asm ”sub $0x1,%eax”
32 eax7 = eax6 −32 1

- addr 0x8048453 @asm ”mov %eax,-0xc(%ebp)”
33 t13 = ebp1 +32 (−12)

34 Mem6 = store(Mem5, t13, eax7, 0, reg32 t)

- addr 0x8048456 @asm ”mov -0xc(%ebp),%eax”
35 Mem7 = Φ(Mem5,Mem6)

36 t14 = ebp1 +32 (−12)

37 eax8 = load(Mem7, t14, 0, reg32 t)

(a) BIL (in the SSA form.)

Variable Value for addressing

t1 A + 0[−4,−4]

t2 A + 0[−44,−44]

t5 A + 0[4, 4]

t6 A + 0[−44,−44]

t7 A + 0[8, 8]

t8 MA+0[8,8]

t9 A + 0[8, 8]

t10 MA+0[8,8]

t11 A + 0[8, 8]

t12 MA+0[−16,−16]

t13 A + 0[−16,−16]

t14 A + 0[−16,−16]

(b) Result of value analysis

Inferred type

Variable Upper bound Lower bound

buf ptr(int8 t) ptr(int8 t)

out ptr(uint32 t) ptr(uint32 t)

c reg32 t uint32 t
(d) Result

Variable (address) Related constraints BIL line

buf (+4) (1) τMem2
.[−44] = τMem2

.[4] = ptr(int8 t) 13, 14, 16

*out (M8 ) (2) τMem4
.[M8] = τeax3 = uint32 t 16, 20

out (+8) (3) τMem3
.[8] = ptr(τeax3 ) = ptr(uint32 t) 18

c (-16) (4) τeax6 = τMem5
.[M8] <: τMem4

.[M8] = uint32 t,

(5) (τeax6 <: γ) ∧ (τ0x1 <: γ) ∧ (τeax7 :> γ) ∧ (γ <: num32 t),

(6) τeax7 = τMem6
.[−16]

31, 32, 34

(c) Type constraints (related variables only)

Figure 3. An example of TIE

the function and find there is a call to a well known function
strlen. The function description that strlen has an
argument of type pointer to char (ptr(int8 t) in TIE) and
a return value of type unsigned integer (uint32 t in TIE)
is stored in the function context.

TIE then generates constraints for the statements. The
constraints are built upon how the variables are used, e.g., if
a variable is used in signed division it must be signed. Table
Figure 3 (c) shows a simplified excerpt of the constraints re-
lated to variables only (Detailed constraints generation rules
are explained in §6.2.). According to the constraints, buf
is of the same type as the variable at -44, which is used as
an argument in the call to strlen. Thus, from the func-
tion description of strlen, we infer the variable at 4 is
of ptr(int8 t), which is equivalent to char * in C. Like-
wise, *out is inferred as uint32 t. However, the address
*out is unknown because it is passed through the pointer
out, thus its address isM8, which means it is contents from
the address 8 (second argument). If a variable is used as a
pointer, we also provide the constraint to show the pointer-
value relation. Line 18 shows out is the pointer of *out,
ptr(uint32 t). To infer c, TIE uses the merged infor-
mation from multiple paths. In the two branches of the first
if of foo, only the true branch gives a hint for inferring c,
where the type of *out is revealed as uint32 t. Since c

is the result of a subtraction with *out, TIE generates the
constraint (5). Through the transitivity of the subtype rela-
tion, τeax6 <: γ <: τeax7 , TIE infers the type of c. Figure 3
(d) shows the inferred types.

4 Lifting Binary Code

4.1 Binary Analysis Platform (BAP)

The input provided to TIE is a binary to either perform
static or dynamic analysis. We have developed a single bi-
nary analysis platform, called BAP, to raise binary code in
either case to a single analysis language. Our design is mo-
tivated by the observation that the main difference between
the two is that in the dynamic analysis scenario we only
analyze the straight-line assembly code produced by a sin-
gle execution, while in the static analysis case we analyze
the assembly code produced by a disassembler. This obser-
vation prompted us to design a single back-end for faith-
ful analysis of assembly code fed by static and dynamic-
specific front-ends.

In the static analysis scenario, BAP disassembles the bi-
nary to produce a stream of assembly instructions. BAP
currently implements a linear sweep disassembly. How-
ever, other disassembles are possible, e.g., Kruegel et al.
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program ::= (label stmt*)* (i.e., functions)

stmt ::= var := exp | goto exp | if exp then goto exp else goto exp | return
| halt exp | assert exp | label label kind | call exp with argument ret var | special string

exp ::= exp ♦b exp | ♦u exp | var | lab string | integer | load(exp, exp, exp, τreg) | store(exp, exp, exp,exp,τreg )

| cast(cast kind,τreg,exp) | Φ(var∗)

label kind ::= integer | string

cast kind ::= unsigned | signed | high | low
var ::= (string, idv , τ )

♦b ::= +,−, ∗, /, /s, ...
♦u ::= − (unary minus), ∼ (bit-wise not)

memory ::= { integer→ integer, integer→ integer, . . .} (:τmem)

argument ::= (var)+

τ ::= τreg | τmem

τmem ::= mem t(τreg)

τ reg ::= reg1 t | reg8 t | reg16 t | reg32 t | reg64 t

Figure 4. The Binary Intermediate Language. Note commas separate operators.

have shown that even obfuscated programs can accurately
be disassembled [11]. BAP raises the stream of instructions
up to its intermediate language, called BIL. All subsequent
analysis is performed on BIL.

In the dynamic analysis scenario, a user first executes
the program within an emulation framework to produce an
instruction trace. Within BAP there are currently two op-
tions. First, we provide a PIN-based implementation that
works on user-land programs. Second, BAP interfaces with
TEMU [3], a whole-system emulator which can produce an
instruction stream for the entire OS and application stack.
In either case the stream of executed instructions are trans-
lated into BIL, on which all subsequent analysis is per-
formed.

4.2 Binary Intermediate Language (BIL)

BIL serves as the first step to reverse engineering by as-
signing all variables a low-level type. In addition, by rais-
ing to BIL we can focus subsequent analysis on a small,
well-specified language instead of dealing with the hun-
dreds of assembly instructions that often have intricate and
non-intuitive semantics. Lifting allows us to focus getting
the semantics right at only one point instead of throughout
all analysis.

The BIL language is shown in Figure 4. Each term in
a BIL statement has an initial low-level type for which we
use as a basis for high-level type reconstruction. Here we
provide an overview; the formal semantics are given else-
where [1]. The base types τreg in BIL IL are regi t where
i ∈ {1, 8, 16, 32, 64} for i-bit registers (i.e., n-bit vectors).
Memories are given type mem t(τreg), where τreg determines
the type for memory addresses, e.g., τreg32 t has 32-bit mem-

ory addresses. Memory is modeled as an array: you give
BIL an unsigned integer, it returns a value.

Our type inference engine infers most constraints by an-
alyzing how variables are used in expressions, e.g., the
signed division “a/Sb” allows us to conclude both a and
b are signed numbers. Expressions in BIL are similar to
those found in most languages. BIL has binary operations
♦b (note “&” and “|” are bit-wise), unary operations ♦u,
constants, and casting. Casting is used when indexing reg-
isters under different addressing modes. For example, the
lower 8 bits of eax in x86 are known as al. When lifting
x86 instructions, we use casting to project out the lower-bits
of the corresponding eax register variable to an al register
variable when al is accessed. Thus, BIL makes explicit the
relationship between register addressing modes, e.g., al is
the lower 8 bits of eax.

Memory operations are representative as either load
and store operations in BIL. While the syntax may seem
complicated, the notation simply conveys what, where, and
how many bytes we are storing or loading. The semantics
of load(e1, e2, e3, τreg) is to load from the memory spec-
ified by e1 at address e2. In C, this would loosely be writ-
ten e1[e2] (which as we will see helps us infer that e2 is a
pointer).1 Finally, τreg tells us how many bytes to load. In
C, if e1 is of type τ , then e1[e2] loads sizeof(τ) bytes.
τreg similarly tells us how many bytes to load from mem-
ory. The semantics of store(e1, e2, e3, e4, τreg) are simi-
lar where e1 is the memory, the dereferenced address is e2,

1The parameter e3 tells us the endianness to use when loading bytes
from memory. In BIL, we use 0 for little endian and 1 for big endian
(since 0 is “smaller” than 1). We include the endianess so that BAP can be
retargetted to different endian architectures, e.g., ARM memory operations
can specify the endianness as a parameter.
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and the value written in e3. store syntactically returns a
new memory name indicating that an update has happened,
which is used extensively when we translate BIL to single
static assignment (SSA) form (§5.1).
Statements and Programs. A program in BIL is a label
followed by a sequence of statements. For example, in the
static case the label is the beginning of the function and
the statements are the lifted assembly. Every function im-
plicitly takes as arguments the current set of registers and
the current state of memory, each of which may be typed.
BIL statements are straight-forward: there are statements
for assignments, jumps, conditional jumps, and labels. In
addition, we include special statements to identify in-
vocation points for externally defined procedures and func-
tions, e.g., int 0x80 is translated to special. The id of
a special indexes the kind of special, e.g., what system
call, which is used in subsequent analysis. As we will see,
if we know the types of a system call, we can use that infor-
mation to infer high-level types.

5 Variable Recovery

5.1 Static Single Assignment (SSA)

High-level languages typically allow an arbitrary num-
ber of variables, each of which must be assigned to a fixed
number of registers (e.g., the 6 general purpose registers
on x86). Further, stack slots may be reused for different
variables of different types, thus we may need to deconflict
when multiple variables are given to a single stack slot. 2

TIE’s first step in variable recovery is to deconflict dif-
ferent uses of the same register and memory cells by trans-
forming the BIL program into single static assignment form
(SSA). SSA on registers is performed by giving each new
register assignment a unique name. For example, each time
eax is assigned a value we will invent a new instance name
eax1, eax2, etc. Note SSA deconflicts multiple writes to
the same register; it does not recover the original variable
names as that information is lost during compilation.

While SSA on scalar registers is quite common,
we also put memory into SSA, e.g., the x86 in-
struction mov [eax], 0xaabbccdd is written as
mem1 = store(mem0, eax, 0xaabbccdd, 0,
reg32 t). During type reconstruction, having different
names allows us to type a stack slot in mem0 different
than mem1. This feature improves our accuracy since a
single stack slot may be used for many different variable
instances, e.g., when designated as a generic register spill
during the register allocation compilation phase [4].

If a variable v is updated in two different branches, the
variable has a different instance v1 and v2 for each branch.

2An example of when a single stack slot is used for different variables
is when the variables have disjoint live ranges.

When the branches meet, we need to give a unique name to
subsequent references regardless of which branch was exe-
cuted. This is denoted by introducing a φ function at each
branch confluence point, e.g., v3 = Φ(v1, v2).

5.2 DVSA Algorithm

The variable recovery algorithm DVSA takes in the pro-
gram in SSA form, and outputs variable locations in mem-
ory along with alias information. The candidate variables
are later typed, and the alias information is used to deter-
mine when a single memory slot is used for two different
types.

A variable is represented as a symbolic memory load or
store. We determine the variables by building up a conser-
vative estimate of the memory configuration by analyzing
SSA memory operations. For example, the BIL statements
shown in Figure 3(a) show the SSA form of our running
example. We generate a map that shows mem0 has mem-
ory configuration {t1 → ebp0}, mem1 has configuration
{t2 → 0} ∪ mem0, etc. For straight-line code, each new
memory state will be derived from exactly one previous
memory state. However, with control flow we must con-
sider memory at merge points, e.g., the memory state after
an if-then-else is the confluence of all paths. For control
flow we consider all the confluence of all possible memo-
ries, e.g., if there is an update to t1 with value v1 along path
1 and an update along path 2 with value v2, we say that
t1 → {v1, v2}.

We use a variant of Value Set Analysis (VSA) [5] to
determine possible alias relationships in subsequent steps.
VSA is an assembly code abstraction interpretation analysis
that approximates the range of values a variable may take on
as a strided interval (SI). SI has a form of s[lb, ub], where
s is a stride and [lb, ub] is the interval, the lower and upper
bound of the value. For example, the SI 2[0, 10] represents
the set {0,2,4,6,8,10}. Strided intervals are more specific
than simple ranges. However, they over-approximate the
set of possible values, e.g., the SI for set {1,2,4} is 1[1, 4],
which is an over-approximation since this SI represents the
set {1,2,3,4}. The main difference between our variant and
the original VSA [5] is we generalize VSA to create an
SI based upon linear combinations of scalars. The origi-
nal VSA would implicitly define the SI as being with re-
spect to a single reference register, e.g., ebp. We allow for
VSA to include any combination of scalar variables in our
SSA form. This leads to more accurate results in our exper-
iments. More details about the specifics of our algorithm
can be found elsewhere [8].
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T ::= τ data | τ fun | > | ⊥ | T ∩ T | T ∪ T | T → T

τ data ::= τ base | τ mem

τ base ::= τ reg | τ refined

τ reg ::= reg1 t | reg8 t | reg16 t | reg32 t

τ refined ::= numn t | uintn t | intn t (n = 8,16, 32) |
ptr(T ) | code t

τ mem ::= {∀ addresses i|li : Ti}
τ R ::= {var1 : T1, · · · , varn : Tn}
τ fun ::= τ mem → τ R → T

constraints ::= T = T | T <: T

| constraints ∧ constraints

| constraints ∨ constraints

Figure 5. Types and constraints of TIE

6 TIE: Type Inference on Binary Code

6.1 Type System

The input to the type reconstruction phase of TIE is the
BIL code annotated with simple register types. Type recon-
struction in TIE is the process of collecting and analyzing
hints based upon how binary operations treat variables in
order to infer high-level types. We use subtype theory to ex-
press the amount of uncertainty that may exist on the exact
higher-level type of a variable. For example, we may know
that a variable is used as an integer, but not know whether it
is signed or not. In our system we have a number supertype
which is less specific than either a signed or an unsigned
integer.

TIE enriches the basic binary-code types from BIL to
include:

• >, which corresponds to a variable being “any” type,
and ⊥, which corresponds to a variable being used in
a type-inconsistent manner.
• Numbers (numn t), signed integers (intn t), and

unsigned integers (uintn t).
• Pointers of type ptr(T) where T is some other type

in the system.
• Records of a fixed number of variables, which map the

variable name vari to its type Ti. We also distinguish
the memory type τmem, which maps each memory cell
address to the type stored at that address.
• General function types T1 → T2. In addition, we de-

note by τfun the type for high-level C functions we in-
fer, which takes the current memory state and a list of
registers as arguments, and returns something of type
T .
• Intersection types (T ∩ T ) and union types (T ∪ T ),

reg32_t

num32_t ptr(α)

⊥

⊥

int32_t uint32_t

reg16_t

num16_t

int16_t uint16_t

reg8_t reg1_t

num8_t

int8_t uint8_t

code_t

Figure 6. Type lattice showing the hierarchy
of types in τ base

which we explain below.

The base integer types in TIE form a subtyping lattice,
shown in Figure 6. We omit additional edges between
base types to keep the diagram simple, e.g., reg16 t <:
reg32 t, though they do exist in our type system. The
subtyping relationships are extracted from the lattice as fol-
lows: if S ← T is an edge in the lattice, then S <: T (i.e.,
think of “<:” as an arrow in the lattice). Following multiple
edges in the lattice corresponds to the transitive nature of
subtyping. Since a type hierarchy is a lattice, the u and t
operations are also applied in the context of subtyping, e.g.,
T1uT2 = M where M is the greatest lower bound of types
T1 and T2 in the subtyping hierarchy.

Intersection and Union Types. TIE’s type system has in-
tersection (∩) and union (∪) types. Mathematically, some-
thing is of type T1 ∩ T2 if it can be described by both types,
e.g., if T1 is the C type for signed characters of range -128
to 127 and T2 is the C type for unsigned characters of range
0 to 255, then T1 ∩ T2 is the type for range 0 to 127. In
our type system, we use intersection types during constraint
solving where something is of type T1∩T2 if it is the order-
theoretic meet (i.e., greatest lower bound) of T1 u T2.

The dual of intersection types is union type T1 ∪ T2,
corresponding to the order-theoretic join (i.e., lowest upper
bound) T1 t T2. The values of T1 ∪ T2 include the union
of values from both types. Note that union types are not the
same as sum types. A sum type adds a tag, while a union
type extends the range of values.

Output. The output of type inference is an upper and
lower bound on the type for each variable. The user is then
free to pick either as the inferred type. Of course if we
can completely infer the type we output the same type for
the upper and lower bound. However, outputting a range is
much more general, and can make explicit the uncertainty
due to the nature of the problem. For example, C unions
may be compiled down so that a single stack slot holds dif-

8



C types Corresponding types in our type system

int int32 t

unsigned int uint32 t

short int int16 t

unsigned short int uint16 t

char int8 t

unsigned char uint8 t

* (pointer) ptr(α)

void * ptr(>)

void ⊥
union T ∪ T

struct, [] (array) {li : Ti}
function τ mem → R→ T (:τ fun)

Table 1. Mapping between the C types the
types in our type system.

ferent typed variables. The only reason we know the type
of the variable at any point in time is due to a user annota-
tion, which is completely lost during compilation. Our type
system allows us to express such uncertainty by expressing
one bound as a type conflict(⊥) and one as a C union (∪).

Correspondence to C Types. TIE’s type system contains
features of modern programming languages which are then
translated in a post-processing step to types in a specific
language. Currently TIE is targeted to output C types by
translating internally-inferred TIE types into C types using
the translation shown in Table 1. Structure types in C cor-
respond to record types in our language, as expected. The
void and void * rules may seem strange for those unfamiliar
with typing systems. It may seem that void * is a pointer to
void, however this is an unfortunate naming problem in C.
void corresponds to no type which is why we equate it with
⊥ in our system. 3 void * can point to anything at all, which
is why we equate it to ptr(>).

Evaluation Metrics. Our goal is to infer conservative yet
accurate types. Conservativeness means we want to infer no
more than the binary code tells us, e.g., never guess a type.
In addition, we want to be precise by inferring as much as
possible from the code.

More formally, let τt be a type variable for a term t.
We allow a typing algorithm to output both a lower bound
B↓(τt) and an upper bound B↑(τt) for a variable. If the
typing algorithm wants to indicate a specific type it outputs
τ = B↓(τt) = B↑(τt).

An algorithm is conservative if the real type τ for a pro-
gram is between the upper and lower bound. More formally:

3Another option would be to introduce the unit type. We did not see
any advantage in doing so.

Definition 6.1. [CONSERVATIVENESS] For a term t, let τsrc
be the type of t in the source code. Given a well-typed
source code program, we say a typing algorithm for t is
conservative with respect to the real type of t (τsrc) if

B↓(τt) <: τsrc <: B↑(τt).

Being conservative is desirable, but not sufficient. For
example, an algorithm could output > for the upper bound
and ⊥ as a lower bound and always be conservative. There-
fore, we also define the notion of how precise the inferred
type is by measuring the distance between the upper and
lower bound. For example, if an algorithm outputs the same
upper and lower bound, and the output type is the same as
the source code type, the distance is 0 and the algorithm is
completely precise.

The distance is measured with respect to our type lattice.
If two types can form a type interval, i.e., one is a subtype
of the other, their distance is the number of edges separating
them on the lattice. If the two types are incompatible, their
distance is set to the maximum value. More formally, the
distance between types is defined as:

Definition 6.2. [DISTANCE] For two types, τ1 and τ2, the
distance between them, denoted by ||τ1 − τ2||, is the differ-
ence between the level of each in the type lattice if τ1 <: τ2
or τ2 <: τ1. Otherwise, it is the maximum distance, which
is ||> − ⊥||.

In our type system shown in Figure 6, the maximum
value of ||> − ⊥|| is 4.

Structural types. Our accuracy metric handles structures
as two dimensions in terms of distance: how many fields
were inferred vs. the real number of fields, and the distance
between the real type for a field and its inferred type.

We formalize the distance between two structure types
A = {li : Si∈1..nA

i } and B = {li : T i∈1..nB
i } as ||A − B||

by measuring the difference between the number of fields
and type for each field:

||A−B|| =
∣∣∣∣(1− 1

nA
)− (1− 1

nB
)

∣∣∣∣+ avg||Si − T i∈1..max(nA,nB)
i ||
||⊥ − >|| ,

(1)
where nA and nB denote the number of fields for A and B,
respectively. The first term shows the difference in the num-
ber of fields and the second term measures the distance of
each field element using the subtype relation. Note that, to
be compatible with the levels in the type lattice the distances
are normalized over the total lattice height.

For example, suppose two record types U = {0 :
int32 t} and V = {0 : int32 t, 4 : uint32 t}. The
number of fields nU and nV are 1 and 2, respectively. Thus,
||U − V || = |(1− 1

1 )− (1− 1
2 )|+ (0+4)/2

4 = 1. In addition,
||reg32 t−V || is computed as the difference of the levels
of reg32 t and V , which is ||reg32 t−{0 : >}||+ ||{0 :
>} − V || = 1 + 1.5 = 2.5.
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Statement Generated constrains

x := e τx = τe

goto e τe = ptr(code t)

if e then goto et else goto ef τe = reg1 t ∧ τt = ptr(code t) ∧ τf = ptr(code t)

call f withm v∗ ret r τ ′m = τmf ∧
∧
v(τv = τvf .[v]) ∧ τr = τrf

(where F ` f : τmf → τvf → τrf , τ ′m = #update(τm))

Expression Generated constraint for term with type variable τ

x (variable) τx

v (integer) τv

−ne (unary neg) τe <: intn t ∧ τ :> intn t

e1 +32 e2 (τe1 <: Tγ ∧ τe2 <: Tγ ∧ τ :> Tγ ∧ Tγ <: num32 t)

∨(τe1 <: ptr(Tα) ∧ τe2 <: num32 t ∧ τ :> ptr(Tβ))

∨(τe1 <: num32 t ∧ τe2 <: ptr(Tα) ∧ τ :> ptr(Tβ))

e1 +n6=32 e2 τe1 <: Tγ ∧ τe2 <: Tγ ∧ τ :> Tγ ∧ Tγ <: numn t

∼n e τe <: uintn t ∧ τ :> uintn t

e1 <Sn e2 τe1 <: intn t ∧ τe2 <: intn t ∧ τ :> reg1 t

load(m, i, d,regn t) τi = ptr(τm.[i]) ∧ τ = τm.[i] ∧ τ <: regn t

store(m, i, v, d,regn t) τi = ptr(τv) ∧ τ = τm{i : τv} ∧ t.[i] <: regn t

Φ(e1, · · · , en) τ ′ <: τe1 ∩ · · · ∩ τen

Figure 7. Example rules for type constraint generation

6.2 Generating Type Constraints

The constraint generation step takes as input a BIL pro-
gram, and outputs a system of type constraints over BIL
terms (i.e., variable, expression, or value). In constraint
generation each term is initially given a unique type vari-
able. The constraints represent what we can infer about the
terms based upon the operations performed. We generate
constraints by syntactically inspecting each term. A sum-
mary of representative constraint generation rules is shown
in Figure 7.

The constraints are expressed in terms of subtyping the-
ory, which has the effect of bounding the type of each
variable. For example, if we generate the constraints that
int32 t <: τx and τx <: num32 t, we know that type τx
is either num32 t or int32 t.

The typing constraints for assignment statements assert
that the type of the assigned variable must be the same as the
computed expression. The constraint for goto says that the
type of the computed address must be code. The constraint
for if-then-else states that the condition must evaluate
to a Boolean, and that both true and false jump targets must
be code. We discuss call and inter-procedural analysis in
inter-procedural constraint generation.

When typing statements, we recursively descend into

any sub-expressions being computed and add the appropri-
ate type constraints, as shown by the rules for expressions
in Figure 7. For variables x, we simply return the type vari-
able τx. For a single integer v, we simply return that v’s
type variable. When v is used in an operation additional
constraints will be added, e.g., if v is used as a constant for
signed comparison with a 32-bit number we add the con-
straint that v must also be a signed 32-bit number.

Unary and binary operations are more involved. For ex-
ample, consider 32-bit addition “e1 +32 e2” (e.g., the add
instruction in x86), which is a function that takes two argu-
ments τe1 and τe2 and returns a value of type τ . Our type
constraints consider three cases, as indicated by the three
parts of the disjunction:

1. Addition is being used to add two numbers, and thus
the result is a number. In this case we add the con-
straint that the operand types τe1 and τe2 must be at
least a num32 t, and the result τ must be at least
num32 t. We express this constraint as: τe1 <:
Tγ ∧ τe2 <: Tγ ∧ τ :> Tγ ∧ Tγ <: num32 t

2. Addition is being used to add a pointer of type τα to a
number of type num32 t. The resulting type is τβ be-
cause there is no guarantee that after adding a number
to a pointer it points to something of the same type. We
express this constraint as: τe1 <: ptr(Tα) ∧ τe2 <:
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num32 t ∧ τ :> ptr(Tβ)
3. Addition is being used to add an integer of type

num32 t to a pointer of type τα. This case is sym-
metric to the above.

Unary negation (−n), bitwise complementing (∼n),
arithmetic operations on variables other than 32-bits, and
signed operations allow us to be much more specific in the
constraints generated. For example, unary negation and
signed comparison allow us to infer that the types of the
operands are at least of signed type. Note that the subtype
relation is covariant for the result type τ and contravari-
ant for the operand types since binary and unary operations
are functions with specific types, e.g., −n : intn t →
intn t.

Typing Memory Operations. Recall we model memory
as an array of elements indexed by an address. We denote
by [i] the DVSA value of i. The typing rules for load
and store should propagate types so that if we store a
value of type α at address [i1], and then subsequently load
a value from [i2], then the resulting type is α when [i1] =
[i2]. We first describe how the typing rules express this idea,
and then discuss how equality between symbolic values is
calculated.

The load rule states that when we are given an index
i into memory m, then i) we can treat the type of i like a
pointer to the type of values at m.[i], and ii) the returned
type τ is the same as the type of values stored at m.[i], and
iii) since the load was t bytes, the resulting type must be a
subtype of t (i.e., τ <: reg32 t for a 32-bit load). The
store operation is symmetric: if we are storing a value v of
type τv at [i], then the memory cell at [i] has type τv .

We introduce equality constraints between memory
dereferences when the DVSA SI’s overlap. For example,
if we store to address j and load from address i, and the
DVSA SI’s say that j and i are the same address range, we
add a type constraint between the referenced memory cells.
This is imprecise and possibly un-conservative, e.g., if j’s
address range is from [0, 100] and i’s address range is [2, 4],
then the load from i may completely, partially or not at all
overlap. As we show in our evaluation our conservativeness
in practice is typically above 90% even with such issues.

Inter-procedural constraint generation. As a pre-
processing step, we create a context F of type signatures
for known functions such as those in libc. When a call to a
function f is issued, we first search the function description
for the function f in F . If we find a function description
(τmf → τvf → τrf ) for the function from F , we match it
caller’s type variables for arguments and return value. The
function #update(τ mem) uses information about calling
conventions to match up offsets correctly. For example, in
the standard call of 32-bit x86 architecture, #update up-
dates {li 7→ Ti} to {li + esp− ebp + 4 7→ Ti}.

struct bar {
char *name;
int size;

};
struct bar m;
struct bar *p = &m;
p->size = 10;

p

name : Tα
size : Tβ

points

+4 {0 : Tα, 4 : Tβ} 

Ptr {0 : Tα, 4 : Tβ} 

m

Figure 8. Access to structural data (source
code and stack)

TIE also handles calls to functions without known pa-
rameter types, e.g., when one local procedure calls another
local procedure. During pre-processing TIE adds all func-
tion names to F . When a call is made to a function, TIE
matches up the callers arguments with the number of pa-
rameters inferred for the callee during DVSA. TIE then adds
the appropriate equality constraints, e.g., the type of the first
passed argument must be the same as the first parameter.
This process is dependent on calling conventions and plat-
form. For example, in the standard call of 32-bit x86 ar-
chitecture, we follow the memory access with the address
above ebp, such as ebp + 4 or ebp + 8, to find the num-
ber and variables for the arguments, and the last value of
eax will be the return value. Supporting additional calling
conventions is straight-forward, e.g., adding fastcall would
entail adding constraints that the first two arguments are
passed in ecx and edx.

Constraints for structural data. To infer the type of
structural data, we restate the rules in Figure 7. Binary
programs access the structural data in two ways: 1) access
via pointers, where binary programs calculate the address
of fields by arithmetic operations on the base pointer, and
2) direct access, where the structural data reside in the stack
as multiple variables, and the fields are accessed directly.
Unfortunately, directly accessing structure fields is indis-
tinguishable from accessing local variables on the stack.
Therefore, we use the access via pointers as a hint that re-
veals the presence of structural data.

Figure 8 gives the intuition of constraint generation for
structural data. A variable m of a two-field structure bar
is located on the stack and a pointer p points to m. When
the second field size is accessed through p, its address
is calculated by applying an add operation with pointer p.
Thus, we can tell that p points to structural data, which has
at least one field at offset 4.

To handle constraints for such hints, we redefine the rules
for e1 +32 e2. If a pointer is used in addition with a constant
value, we infer it as a pointer to structural data as follows.

(τe1 <: Tγ ∧ τe2 <: Tγ ∧ τ :> Tγ ∧ Tγ <: num32 t)

∨(τe1 <: ptr({0 : Tα, [e2] : Tβ}) ∧ τe2 <: num32 t ∧ τ :> ptr(Tβ))

∨(τe1 <: num32 t ∧ τe2 <: ptr({0 : Tα, [e1] : Tβ}) ∧ τ :> ptr(Tβ)),
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where [e1] and [e2] are the value of e1 and e2, respectively.
For example, the constraint generated for p is (we show the
2nd disjunctive constraint) · · · ∨ (τp <: ptr({0 : Tα, 4 :
Tβ}) ∧ τ4 <: num32 t ∧ τ :> ptr(Tβ)) ∨ · · · .

6.3 Constraint Solving

The final step in TIE is solving the generated type con-
straints. In this section we present our constraint solving al-
gorithm, that takes in a list of type constraints C and returns
a map from type variables to the inferred type interval. We
use a unification algorithm extended to support subtypes.
During the constraint solving process, we keep a working
set that contains the current state of our algorithm. The
working set consists of the following:
• C: the list of type constraints that remain to be pro-

cessed by our algorithm.
• S<:: a set containing all the inferred subtype relations.
• S=: a map from bound type variables to types.
• B↑: a map from type variables to the upper bound of

the inferred type.
• B↓: a map from type variables to the lower bound of

the inferred type.

The final solution returns the pair 〈B↑,B↓〉. During each
step of constraint solving, we remove and process a single
element from the constraint worklist C. Our algorithm ter-
minates when the constraint list is empty (C = ∅). The
initial constraint list contains the constraints from the con-
straint generation process (described in § 6.2) while all other
contexts (S<:, S=, B↑, B↓) are initialized to empty (∅).

In sections § 6.3.3-§ 6.3.4 we describe how we solve each
constraint type shown in Figure 5. We solve each constraint
in the following order: equality, subtype relation, conjunc-
tive and disjunctive constraints.

6.3.1 Equality constraints (Tα = Tβ)

Equality constraints are solved through unification. Unifica-
tion is essentially a substitution process, where given S = T
we replace all occurrences of S with T in our worklist C.
Algorithm 1 shows how the working set is updated for every
equality constraint.

Note that before performing substitution, we perform the
occurs check [17], in which we check whether a type vari-
able occurs in both hands of an equality, e.g., α = ptr(α).
Since we do not support recursive types, we raise type er-
ror and drop the current working set whenever we have an
occurs check violation. Also note that the last option in our
algorithm is to drop the constraint. We do this to continue
typing the remaining variables, instead of failing and return-
ing the type ⊥ for all variables.

6.3.2 Subtype relation constraints (Tα <: Tβ)

To solve subtype relation constraints, we use a type closure
algorithm. Subtype relation constraints describe type in-

Algorithm 1: Solving a single equality constraint from
the constraint list C.
SolveEquality (S = T , C)

if IsFreeVariable(S) then
C = C[S\T ] ; S= = S={S 7→ T} ;

else if IsFreeVariable (T ) then
C = C[T\S] ; S= = S={T 7→ S} ;

else if S = ptr(S1) and T = ptr(T1) then
C = C ∪ {S1 = T1} ;

else if S = {li : Si} and T = {li : Ti} then
C = C ∪

⋃
i{Si = Ti} ;

else
Drop Constraint

end

equality relations, thus the solution provided by the closure
algorithm maps each type variable to an interval. For each
type variable α, we keep track of its upper bound B↑(α)
and lower bound B↓(α), which are initialized as > and ⊥,
respectively. Every time we process a subtype relation con-
straint that involves a type α, the closure algorithm uses
the constraint to refine the type interval of α. For exam-
ple, the constraint α <: ptr(int32 t) makes the closure
algorithm update the upper bound of α to ptr(int32 t)
(B↑(α)← ptr(int32 t)).

The core idea behind the closure algorithm is the prop-
agation of type information via transitive subtype relations.
We use S<:, to keep track of the transitive subtype rela-
tion. S<: is always closed under the subtype relation for a
given set of subtype relation constraints. For example, if
S<: = {α <: β} and we append the constraint β <: γ,
the new S<: will become {α <: β, β <: γ, α <: γ}.
If another constraint int32 t <: α is given, the lower
bound of α, β, γ will be updated to int32 t. Note that for
constraints on constructed types, e.g., ptr(α) <: ptr(β)
we recurse into the ptr() and infer the implicit constraints
α <: β.

Meet and Join. We populate B↑ and B↓ during the sub-
type resolution process. We define rules for u and t op-
erations in Figure 9 to compute the upper bound B↑ and
lower bound B↓ respectively. M-SUBTYPE and M-NOREL
show the basic behavior of the u operation. As shown in
M-TYPEVAR, if u is applied with a type variable α, it pro-
duces the intersection type with α. In M-PTR, we apply
u on the parameters of pointers, recursively. For the en-
tries that have no matched label in both record types, we
add them to the result of u. As shown in M-RECBASE, if a
record type meets a base type τ , then the base type is con-
verted to an equivalent record type {0 : τ}, and u is applied
to them again. The rules for t work in a similar manner.
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S <: T S ∈ τ base T ∈ τ base

S u T ` S
M-SUBTYPE

S 6<: T T 6<: S

S u T ` ⊥
M-NOREL

α u T ` α ∩ T
M-TYPEVAR

T1 : ptr(P1) T2 : ptr(P2) ptr(P1 u P2) ` T3

T1 u T2 ` T3

M-PTR
U : {li : Si} V ∈ τ base U u {0 : V } ` T

U u V ` T
M-RECBASE

S <: T S ∈ τ base T ∈ τ base

S t T ` T
J-SUBTYPE

S 6<: T T 6<: S

S t T ` >
J-NOREL

α t T ` α ∪ T
J-TYPEVAR

T1 : ptr(P1) T2 : ptr(P2) ptr(P1 u P2) ` T3

T1 t T2 ` T3

J-PTR
U : {li : Si} V ∈ τ base U t {0 : V } ` T

U t V ` T
J-RECBASE

Figure 9. Rules for u and t operations

Decomposition Rules. Before solving a subtype relation
constraint, we try to simplify it by applying decomposition
rules. For instance, if a type is a subtype of an intersection
type, S <: T ∩U , we divide it into two constraints, S <: T
and S <: U . Likewise, if a type is a supertype of a union
type, S ∪ T <: U , it is decomposed into S <: U and T <:
U . For extended types, the decomposition rules are applied
recursively, i.e., ptr(S) <: ptr(T ) is changed to S <: T .
We denote the application of decomposition rules with Υ()
and a subtype constraint c is decomposed into c′ as Υ(c) 
c′. For constraints on basic type variables, where further
decomposition is not possible, the decomposition operator
returns an empty set (∅).

The overall closure algorithm for each subtype relation
constraint S <: T is:

1. Remove S <: T from C and update C with Υ(S <:
T ).

2. ∀(α <: S) in S<:, add α <: T to S<: and update
B↑(α)← B↑(α) u B↑(T ) and C with Υ(α <: S)

3. ∀(T <: β) in S<:, add S <: β to S<: and update
B↓(β)← B↓(β) t B↓(S) and C with Υ(T <: β)

For a given constraint S <: T , we search S<: and find
all type variables that are subtypes of S and supertypes of
T . We then update the upper bound of all subtype variables
of S with the upper bound of T and the lower bound of
all supertype variable of T with the lower bound of S. For
updating the lower bound and the upper bound, we use the
t and u operations we defined above.

Similarly to the occurs check, we perform a cycle check
in S<:. While computing the closure of S<: for a newly
added subtype relation, if the same type variable occurs in
both hands of an inequality, it means a cycle exists in S<:.
In this case, we drop the constraint that makes the cycle and
remove it from C.

6.3.3 Conjunctive constraints (C1 ∧ C2)

To solve a conjunction of type constraints, we decompose
the conjunction to a list and append the constraints to our
worklist C.

6.3.4 Disjunctive constraints (C1 ∨ C2)

Whenever we need to solve a disjunction of type con-
straints, TIE tries to find a solution for each type constraint
separately. Type constraints that force type variables to go
to ⊥ (due to incompatible constraints) are rejected. The
remaining solutions are merged using composition rules.
When none of the type constraints in the disjunction are
satisfiable, TIE raises a type error. If more than one con-
straints are satisfiable, we either (1) keep the constraints
from all satisfiable constraints, or (2) produce a different
solution for each satisfiable constraint. In the first case, we
have a single general conservative solution that satisfies all
compatible constraints, while in the latter, we can have an
exponential number of more specific solutions in the num-
ber of disjunctions. TIE always applies the former, since our
goal is to always infer types conservatively. The composi-
tion rules described below, show how to merge satisfiable
disjunctive constraints.

Composition Rules. Our composition rules take advan-
tage of the intersection and union types to merge multiple
subtype relation constraints (regarding a certain type vari-
able) into a single constraint. These rules are applied for
different type variables that refer to the same memory loca-
tion according to DVSA.

Suppose, we have two constraints α <: Q ∧ β :> T and
α <: U ∧ β :> V , both satisfiable with the current working
set. The disjunctive constraints are

(α <: Q ∧ β :> T ) ∨ (α <: U ∧ β :> V ) =

(α <: Q ∨ α <: U) ∧ (β :> T ∧ β :> V )
(2)

If Eq.2 holds for α and β , the more conservative condition
α <: Q ∪ U and β :> T ∩ V also holds. Thus, the above
disjunctive constraints can be conservatively merged into
conjunctive constraints: (α <: Q ∪ U) ∧ (β :> T ∩ V ).

6.3.5 Collection and interpretation of results

After solving all the constraints (C = ∅), each working set
is a solution. Since our type system has richer types than C,
we generalize the solution.
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Figure 10. Summary of precision (left) and conservativeness (right)

Type interval. In the working set, the upper bound and
lower bound provide the range of the inferred type for the
variable. We call the interval from the lower bound to the
upper bound of a variable α as a “type interval,” denoted by
[B↓(α),B↑(α)].

Structural equality in results. The real types in C source
codes has struct and arrays for structural types. However,
pointers are also used interchangeably with them. Thus, the
three types are not distinguishable because their behavior is
the same in binary programs. In our type system, we assume
they are in structural equivalence as follows:

ptr(α) ≡ {0 7→ α} ≡ α[](array)

When we compare two structural equivalent types. We con-
vert the type into a record type {0 7→ α}, which is the most
general form.

Collection and generalization. We convert each work-
ing set into a final solution. First, if a type variable, Tα,
is remained in B↑ and B↓, we replace it as B↑(Tα) in B↑
and B↓(Tα) in B↓, respectively. We also generalize record
types. If B↑ of record types has fields of >, we remove the
fields. If all the fields in B↑ are of the same type, {li : T ∀i},
we convert it to more general structure form, {0 : T}, ac-
cording to the structural equivalence. Second, for each term
t, we find a matching type variable Tt and a type interval
of [B↓(α),B↓(α)]. If S= has a mapping for Tt, we use
the equivalent type variable of Tt in S= instead of Tt. At
last, we collect the result for memory and group them by
its address. Since we are based on the SSA form, we may
have more than one variable for each memory address and
it means the memory location is reused by various data of
different type. Thus, we combine members for the same
address as a union type of them. Through this collection
process, each variable has a final type interval.

7 Implementation

TIE is primarily implemented in 29k of OCaml code,
most of which is generic binary analysis code such as a
data-flow framework, building CFG’s, etc. Our static anal-
ysis component uses a linear sweep disassembler written
in C build on top of libopcodes (more advanced disas-
sembly such as dealing with obfuscated code is left outside
the scope of this paper, but such routines can be plugged
into our infrastructure). We base our dynamic analysis on
PIN [13], and currently there are about 1.4k lines of C++
code to create the instruction trace. The variable recovery
and type inference are approximately 3.6 and 2.1K lines of
OCaml, respectively.

8 Evaluation

8.1 Evaluation Setup

We have evaluated TIE on 87 programs from
coreutils (v8.4). We compiled the programs with de-
bug support but only use the information for measuring type
inference accuracy. The type information was extracted us-
ing libdwarf. TIE’s inter-procedural analysis used func-
tion prototypes for libc, as extracted from the appropriate
header files. All experiments are performed on 32-bit x86
binaries in Linux.

We measure the accuracy of TIE against the RE-
WARDS [12] code given to use by the authors for the dy-
namic analysis setting, and against Hex-rays decompiler
(v1.2) in IDA Pro [2] for static analysis setting.

TIE outputs an upper and lower bound on the inferred
type. We use this to measure the conservativeness of TIE.
For precision, we translate the bound output by TIE into a
single C type by translating the lower bound unless it is ⊥.
If the lower bound is ⊥, we output the upper bound. We
found this heuristic to provide the most accurate results.
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Figure 11. Conservativeness and distance for structural types

Caveats. Hex-rays and REWARDS have an inherently
less informative type system than ours since they are re-
stricted to only C types. For example, REWARDS guesses
that a register holds an uint32 t with no additional
information for 32-bit registers, while Hex-rays guesses
int32 t in the same situation. Our reg32 t reflects in
the same situation that we do not know whether the register
is a signed number, unsigned number or pointer.

Thus, we must either convert their types to ours, or vice-
versa. We’ve experimented with both. In order to provide
the most conservative setting for REWARDS and Hex-rays,
we translated each type output as τ by them as the range
[⊥, τ ].

8.2 Static analysis

Figure 10 shows the overall results for TIE. Figure 10(a)
shows the type intervals with and without inter-procedural
analysis are roughly correlated. However, the inter-
procedural analysis has shorter type intervals because it has
more chance to refine types. Figure 10(b) represents the
position of real types within the type interval normalized
as [−0.5, 0.5]. As the position is closer to the bottom, the
real types are closer to the lower bound in type lattice. As
shown in Figure 10(b), for the both cases, the real types are
closer to the lower bound, which is the most specific type
in the type interval. However, the inter-procedural analy-
sis has the real types closer to the middle of type interval.
Thus, Figure 10 tells the inter-procedural analysis provides
tighter type interval from the real types at center.

Figure 12 shows the per-program breakdown on conser-
vativeness and precision for TIE and Hex-rays on the test
suite. In the intra-procedural case our inferred type is 28%
more precise than Hex-rays, and with inter-procedural anal-
ysis we are 38% better. While Hex-rays algorithm is pro-
prietary, it appears that in many cases Hex-rays seems to

be guessing types, e.g., any local variable moved to eax is
a signed integer. TIE, on the other hand, is a significantly
more principled approach.

We investigated manually cases where TIE inferred an
incorrect bound. We found that one of the leading causes
was typing errors in the original program. For instance,
in the function decimal ascii add of getlimits, a
variable of signed inter stores the return value of strlen,
but the type signature for strlen is unsigned.

Structures. Structure are challenging to infer because we
must identify the base pointer, that fields are being accessed,
the number of fields, and the type for each one. Figure 11
breaks out the conservativeness and precision for only struc-
tural types. TIE’s accuracy is conservative 90% on struc-
tural types, while Hex-rays is less than 45%. TIE’s preci-
sion of about 1.5 away from the original C type, which is
about 200% better than Hex-rays. We conclude that TIE
identifies structural types significant more conservatively
and precisely than Hex-rays.

8.3 Dynamic analysis

Table 2 shows the result of TIE and REWARDS with
dynamic analysis. The coverage column measures how
many variables are typed. As expected, a dynamic ap-
proach only infers a few variables since only a single path
is executed. Unlike TIE, REWARDS guesses a variable
has type uintn t when no type information is available,
which reduced overall precision since REWARDS would
mis-classify signed integers, pointers, etc. as unsigned inte-
gers. We modified REWARDS to more conservatively use
type regn t to get a best case scenario for REWARDS
(called REWARDS-c in the table). However, in all cases
TIE is more precise (i.e., has a lower distance to the true
type) and is more conservative than REWARDS.
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TIE (dynamic) REWARDS REWARDS-c TIE (static w/ 100% coverage)
Program Coverage Conserv. Distance Conserv. Distance Conserv. Distance Conserv. Distance
chroot 9.23 % 1.0 0.88 0.56 2.3 1.0 1.42 0.87 1.76

df 6.9 % 1.0 1.39 0.46 2.73 1.0 1.62 0.942 1.42
groups 11.11 % 1.0 1.47 0.48 2.22 0.96 1.7 0.93 1.52
hostid 6.89 % 1.0 0.92 0.71 1.82 1.0 1.25 0.97 1.63
users 9.52 % 1.0 1.09 0.73 1.87 0.95 1.64 0.97 1.51

average 8.73 % 1.0 1.15 0.59 2.19 0.98 1.53 0.93 1.57

Table 2. TIE vs. REWARDS with dynamic analysis. TIE is both more precise and more conservative.

A more interesting metric is comparing TIE using static
analysis of the entire program against REWARDS using dy-
namic analysis of a single path. This is interesting because
one of the main motivations for REWARDS dynamic ap-
proach is the hypothesis that static analysis would not be
accurate [12]. We show that in our test cases static anal-
ysis is about as precise as REWARDS but can type 100%
of all variables. We conclude that a static-based approach
can provide results comparable to dynamic analysis, while
offering the advantages of working on multiple paths and
handling control flow.

9 Related Work

Type reconstruction. Our approach to reverse engineer-
ing using type reconstruction is founded upon a long history
of work in programming languages. Using type inference to
aid decompilation has previously been proposed by others,
e.g,. [16, 10, 19]. However, previous work typically tries
to infer C types directly, while we use a type range and a
type system specifically designed to reflect the uncertainty
of reconstruction on binary code. Further, to the best of our
knowledge previous work has not been implemented and
tested on real programs.

As mentioned, the REWARDS system [12] takes a dy-
namic approach to reverse engineering data types. We com-
pare TIE to REWARDS [12] because it is among the latest
and most modern work in the area. We also compare our
system against the Hex-rays decompiler, which is widely
considered the industry standard in decompilation includ-
ing data abstraction reverse engineering.

Semantic Types. REWARDS [12] calls the types printed
by their system “semantic types”. A semantic type in
REWARDS is a manually specified name for a type sig-
nature, e.g., a structure may have the semantic type
sockaddr t instead of the complete type signature for
the structure. Type ascriptions are useful for printing out
complex types, e.g., printing out sockaddr t as the type
of variable is less cumbersome than printing out the full
type signature struct {short, ushort, ushort
char[14], char[8]}.

REWARDS has code that ascribes their pre-defined
types to the arguments of pre-defined common library func-
tions. The ascribed types are propagated like any other
type. For example, the type signature for open has return
type int. Whenever REWARDS sees a call to open, RE-
WARDS assigns the return variable the ascribed type name
file d instead of the actual type int. If the return vari-
able is then assigned to another variable the new variable
also gets the ascribed type. REWARDS has manually de-
fined about 150 different type names and manually ascribed
those types to about 84 standard library calls.

Type ascription is simple to add as part of type infer-
ence, e.g., the rules can be found in standard type theory
textbooks such as Pierce [17]. While ascribing manually-
defined type names to function arguments as in REWARDS
would certainly make TIE a better tool, it adds no power to
the overall type system thus is left outside the scope of this
work.

Variable Recovery. Our approach for recovering vari-
ables is based upon Balakrishnan et al. [6, 7]. However,
their work only recovers variable locations, and does not
infer types. While TIE could plug in DIVINE [7] to recover
variables, we use our own algorithm based upon data flow
lattices. BAP and the BIL language are redesigns of the
Vine [3] changed to follow the formal semantics from [1].

Typed Assembly Language. Despite the similarity in
name, Typed Assembly Language (TAL) [14, 15, 9] ad-
dresses a different challenge that ours. The idea of TAL is to
maintain user-provided types for type-safe programs down
through code generation in the compiler in order to find
program bugs. After code generation the types are thrown
away. Our problem is to infer types on unsafe programs
(e.g., C types) from binary code. However, type reconstruc-
tion for TAL types is an open, related, and interesting prob-
lem [18].

10 Conclusion

In this paper we presented an end-to-end system for re-
verse engineering data abstractions in binary code called
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TIE. At the core of our system was a novel type recon-
struction algorithm for binary code. Unlike previous ap-
proaches in research such as REWARDS [12], which are
limited to dynamic analysis of a single execution trace, we
handle control flow and thus are amenable to both a static
and dynamic analysis setting. We do so while providing a
more precise yet conservative type than REWARDS. Our
implementation also shows that TIE is about significantly
more precise than the leading industry product (the Hex-
rays decompiler). We conclude that our type reconstruction
techniques and approach is a promising alternative over cur-
rent methods in research and practice.
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