

• Talos Vulndev

– Third party vulnerability research
• 170 bug finds in last 12 months

– Microsoft

– Apple

– Oracle

– Adobe

– Google

– IBM, HP, Intel

– 7zip, libarchive, NTP

– Security tool development

• Fuzzers, Crash Triage

– Mitigation development

• FreeSentry

• Research Lead

• Cisco Talos VulnDev

https://github.com/intelpt

http://moflow.org

https://github.com/talos-vulndev/TalosIntelPtDriver
http://moflow.org/

• CPUID with leaf 0x7 can detect the support for Intel PT

• If supported, CPUID with leaf 0x14 can return the supported PT features

• Different CPUs implement different capabilities

• The architecture defines different MSRs to control each tracing operation

• Intel initially released Intel PT as part of Broadwell architecture

• Intel expanded on the functionality in Skylake

• Skylake architecture to be available on Xeon CPUs in 2017

INTEL_PT_CAPABILITIES ptCap = { 0 };

int cpuid_ctx[4] = { 0 };// EAX, EBX, ECX, EDX

// Processor support for Intel Processor Trace is indicated by

// CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1.

__cpuidex(cpuid_ctx, 0x07, 0);

if (!(cpuid_ctx[1] & (1 << 25))) return FALSE;

// Now enumerate the Intel Processor Trace capabilities

RtlZeroMemory(cpuid_ctx, sizeof(cpuid_ctx));

__cpuidex(cpuid_ctx, 0x14, 0);

// If the maximum valid sub-leaf index is 0 exit immediately

if (cpuid_ctx[0] == 0) return FALSE;

EAX = 0x14 - Intel Processor Trace

EBX

• Bit 00: IA32_RTIT_CTL.CR3Filter can be set to 1

• IA32_RTIT_CR3_MATCH MSR can be accessed.

• Bit 01: Configurable PSB and Cycle-Accurate Mode.

• Bit 02: IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs across warm reset.

• Bit 03: MTC timing packet and suppression of COFI-based packets.

ECX

• Bit 00: Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1 utilizing the ToPA output scheme

• IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.

• Bit 01: ToPA tables can hold any number of output entries

• Maximum specified by the MaskOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.

• Bit 02: Single-Range Output scheme.

• Bit 03: Output to Trace Transport subsystem.

• Bit 31: Generated packets which contain IP payloads have LIP values

• Includes the CS base component

EAX = 0x14 - Intel Processor Trace

Packet Generation (ECX = 1)

EAX

• Bits 2:0: Number of configurable Address Ranges for filtering.

• Bit 31:16: Bitmap of supported MTC period encodings

EBX

• Bits 15-0: Bitmap of supported Cycle Threshold value encodings

• Bit 31:16: Bitmap of supported Configurable PSB frequency encodings

• Implemented entirely in hardware

• You can trace all software that the CPU runs (except for SGX secure containers)

• Suppose you have to analyze an hypervisor or an evil SVM handler

• With Intel PT you can do that!

• Performance

• Low over-head (15% CPU perf hit for recording)

• Logs directly to physical memory, bypassing TLB and eliminating cache pollution

• Minimal log format takes little time to record

• One bit per conditional branch

• Only indirect branches log dest address

• Different kinds of trace filtering:

1. Current Privilege Level (CPL) – used to trace all of user or kernel

2. PML4 Page Table – used to trace a single process

3. Instruction Pointer – used to trace a particular slice of code (or module)

• Two types of output logging:

1. Single Range

2. Table of Physical Addresses

• OS should allocate a contiguous physical memory buffer

(MmAllocateContiguousMemory is a good fit)

• This mode is best suited for

1. Tracing of single application with sufficient size of buffer

2. Redirect the output to a MMIO port or some JTAG controllers

3. Always-On tracing for post-mortem or forensic analysis

• To enable:

• Set the proper MSRs

• MSR_IA32_RTIT_OUTPUT_BASE and MSR_IA32_RTIT_OUTPUT_MASK_PTRS

• Start the Tracing by setting the “TraceEn” flag in the control register

• The buffer will be filled by the processor in a circular-manner

• Table of Physical Addresses (aka ToPA) is a list of tables that describes each physical

address used for storing the trace

• A well-known data-structure definition PML4 (see the Intel Manual)

• This allows the processor to write data to non-contiguous memory regions

• Binary compatibility with the “MDL” data structure of Windows kernel

• Modality best suited for:

1. Tracing big code areas and/or dump the results in a user-mode file

2. Supporting pause/resume of a application and on-the-fly analysis of the dump

• Very powerful – an Interrupt could be generated by the processor at a certain

point if the buffer is going to be full, or STOP signal

• We have decided to write a Windows driver, with the goal of supporting all trace and filtering

modes for kernel and userspace

• At the time of this writing the driver is in version 0.5

• Supports all the filtering mode combinations and both output modes

• Supports multi-processors

• Supports kernel mode code tracing and kernel mode API

• Some issues had been resolved:

1. APIC controller programming for the PMI interrupt notification

2. User-mode buffer mapping

3. Multi processor issues

4. How to trace spawned processes

• The ToPA output scheme supports a mode in which the CPU triggers a PMI

(performance monitor interrupt) every time the buffer is full*

• We would like to enable and connect to that interrupt

• In that way we can process the trace content when buffer is full

• To control the traced process, either

• Use a hypervisor -> VMEXIT

• Suspend the target process from kernel, dump the trace data and resume

• Another problem here: the IRQL in which the code runs is HIGH_LEVEL

• Solved dividing the job in 3 phase: PMI Handler -> DPC -> Work Item

• Connecting the ISR and find a way to map the IoApic memory space have

been not an easy task

• Processor Trace works with physical addresses - not Virtual addresses

• ToPAs describe a big buffer composed by different smaller physical chunks.

• Need a way to create a big virtual buffer composed by each chunk and map

this to user-mode in a very secure manner (otherwise the driver will be

subject of kernel-exploitation)

• Intel is not stupid. The ToPA and the MDL data structures are compatible

• Solution:

• allocate physical memory using the OS facilities*

• Convert the MDL descriptor into ToPA entries

• Securely map the final virtual buffer using the OS

• New feature in version 0.5

• Each processor has an associated PT Buffer mapped in the target user-mode

process (but not in kernel-mode)

• Only an event signaled when the PMI Interrupt fires was not enough

▪ Introduced the User-mode callbacks – a smart method to manage the PT

log directly from User-mode

• Still some problems in managing multi-threaded and multi process

application

• New feature in version 0.5

• The Driver is able to perform the tracing of Kernel mode code in 2 ways

1. From the user-mode application (executed with Admin privileges) ->

Uses IP filtering mode

2. From another kernel-mode driver -> the driver must use the exported

APIs and manage the PT buffer(s), and multi-processor stuff on its own

• In this way we have been able to perform the trace of:

1. The loading / unloading of a new Kernel module

2. Some IOCTL called by a test user application

Quite a simple setup:

1. Get an handle to the PT Device

hPtDev = CreateFile(L"\\\\.\\WindowsIntelPtDev", FILE_ALL_ACCESS, 0, NULL,

OPEN_EXISTING, 0, NULL);

2. Spawn the process / decide what to trace and set the options in the PT_USER_REQ

data structure (process ID, CPU Affinity mask, buffer size, …)

3. Start the tracing

DeviceIoControl(hPtDev, IOCTL_PTDRV_START_TRACE, (LPVOID)&ptStartStruct,

sizeof(PT_USER_REQ), lpPtBuffArray, sizeof(LPVOID) * dwNumOfCpus,

&dwBytesIo, NULL);

4. Stop the trace and clear the resources (important)

bRetVal = DeviceIoControl(hPtDev, IOCTL_PTDRV_CLEAR_TRACE,

(LPVOID)&dwTargetCpu, sizeof(DWORD), NULL, 0, &dwBytesIo, NULL);

1. Spawn a new thread for each CPU

2. To register the user-mode callback use the new PTDRV_REGISTER_PMI_ROUTINE

IOCTL code (one call for each thread)

3. Specify an affinity mask composed by only the executing processor ID

4. Perform a wait in an alertable state

That’s all!

Your User-mode callback will be called each time the CPU trace buffer will

become full

• CR3 physical page swappable?

• Quick analysis shows that in Windows 10586

• Only the main PML4 table page is always in memory

• Otherwise make use of the PIP packets

• The problem of the spawned processes has been resolved using the trace by

IP – detect when a new process is spawned and add the new range

OR

• Use the tracing by CPL and parse the PIP packets

Vulnerabi l i ty D iscovery

• Now we have a fast tracing engine
• How will we utilize it for vulnerability discovery?

Evolut ionary Fuzz ing

• Incrementally better mutational dumb fuzzing
• Trace while fuzzing and provide feedback signal
• Evolutionary algorithms

– Assess fitness of current input
– Manage a pool of possible inputs

• Focused on security bugs

Evolut ionary Fuzz ing

• From previous research, these are the required components
– Fast tracing engine

• Block based granularity

– Fast logging
• Memory resident coverage map

– Fast evolutionary algorithm
• Minimum of global population map, pool diversity

Amerc ian Fuzzy Lop

• Michal Zalewski 2013
– Delivered the first performant opensource evolutionary fuzzer

• Features
– Uses variety of traditional mutation fuzzing strategies
– Block coverage via compile time instrumentation
– Simplified approach to genetic algorithm

• Edge transitions are encoded as tuple and tracked in a bloom filter
• Includes coverage and frequency

– Uses portable* Posix API for shared memory, process creation

Amerc ian Fuzzy Lop

• Contributions
– Tracks edge transitions

• Not just block entry

– Global coverage map
• Generation tracking

– Fork server
• Reduce fuzz target initialization

– Persistent mode fuzzing
– Builds corpus of unique inputs

reusable in other workflows

Amerc ian Fuzzy Lop

• Trace Logging
– Each block gets a unique ID
– Traversed edges are indexed

into a bloom filter map
– Create a hash from the

src and dst block IDs
– Increment map for each

time an edge is traversed

– Each trace is easily comparable to the
entire session history

Windows Evo lut ionary Fuzz ing

• Started research into this area in 2015
– High Performance Fuzzing
– Go Speed Tracer

• Windows Software primarily distributed as binaries
– High speed binary code coverage required

• Seemed like a good opportunity to use Intel Processor Trace
– First prototyped on Linux using simple-pt
– Demoed Linux afl-intelpt at Ruxcon 2015

• Lack of a usable driver for Windows lead to partnership with Andrea

WinAFL

• Ivan Fratric July 2016
– First performant windows evolutionary fuzzer

• Features
– Its American Fuzzy Lop! For Windows!
– Windows API port for memory and process creation
– DynamoRIO based code coverage
– Filter based on module
– Block and Edge tracing modes

– Block tracing by default due to issues with multi-threading

– Persistent execution mode

WinAFL

• Ivan Fratric July 2016
– First performant windows evolutionary fuzzer

• Persistence
– Multiple inputs can be parsed without exiting the process
– DynamoRIO allows hooking of target function

– User specifies address and number of arguments
– On function exit, WinAFL repopulates args and loops function
– User specifies number of loops before process restart

WinAFL

• Ivan Fratric July 2016
– First performant windows evolutionary fuzzer

• Persistence is key
– Restart process each time (disable persistence) ~2.3 exec/s
– Persist 100 iterations before restart ~72 exec/s
– Persist 1000 iterations ~123 exec/s
– Persist 10000 iterations ~133 exec/s

WinAFL Inte lPT

• Richard Johnson 2016
– Windows hardware driven evolutionary fuzzer

• Key problems to solve
– The IntelPT log does not contain Block IDs or all branch targets
– Parsing large compressed logs is time consuming
– Native persistence mode is not yet implemented

– *Work in progress using Avrf as hooking engine

– We can filter up to 4 address ranges or whole process

WinAFL Inte lPT

• Richard Johnson 2016
– Windows hardware driven evolutionary fuzzer

• Current status
– WinAFL IntelPT now accurately decodes full trace
– The TIP packet of IntelPT holds target addresses

– Generated for indirect branches and return
– The TNT packets are conditional branch states

– We must disassemble from last known IP to recover conditional branch target
– We use a discovered branch cache to reduce disassembly time (needs persist to disk*)

– Edge src/dst encoded into AFL bloom filter

– We currently use CreateProcess and WaitForSingleObject
– See Go Speed Tracer for experiments in Windows fork()

WinAFL Inte lPT

• Performance
– Dummy loop benchmark
– CreateProcess / Wait
– 85 exec/sec

WinAFL Inte lPT

• Performance
– Trace enabled
– No log parsing
– 72 exec/sec
– 15% tracing overhead

WinAFL Inte lPT

• Performance
– Full tracing and parsing
– 55 exec/sec
– 22% parsing overhead

– Total of ~35% overhead

• Tracing is used very often in fuzzing and dynamic analysis

• Intel Processor Trace is a promising mechanism for hardware tracing

• Intel is dedicated to producing high performance trace features

• TODO List:

1. Implement thread context switch tracing in a reliable way (ETW)

2. Modify a Hypervisor to be able to use Intel PT inside a Guest VM

3. Understand how to trace VMM, SMM code and test with SGX software

4. Enable persistent mode in native apps with Intel PT

Thank you!

https://github.com/intelpt

@richinseattle / rjohnson@moflow.org

@aall86

Questions?

• Always increasing in their number (think about AppContainer or Browsers for

example)

• A simple solution resides in the log parser:

▪ Make use of the PIP (Page information packets) to identify each process

• Big drawbacks: the size of the log is HUGE – the time needed to parse it is

even MORE

• Register a Process / Thread Creation callback in Kernel mode and trace one

process per time

▪ Simple solution, log size still acceptable

▪ Some malware or complex applications requires process interactions

BUT …

• Do you remember the old glorious PUSAHD instructions?

• From the Intel manuals: “Pushes the contents of the general-purpose registers onto the stack.”

• No equivalence for X64 registers or Kernel MSR

• I was studying how to trace only a single thread, intercepting the Windows

Thread Context Switcher

• Someone has pinpoint to me the existence of another very-cool instruction in

the AMD64 architecture, but no so known by the research community

Special thanks to Xinyang Ge of Microsoft Research for signaling this

• Saves some processor state components to the XSAVE area

• MMX, SSE, AVX, AVX-512 user mode registers (What a heck is AVX-512?)

• … and even the new CPU registers that belongs to Intel PT and Intel MPX

• New CPUID leaf functions for compatibility verification, new CPUs opcodes

• Basically is a very fast way to save even X64 Kernel-accessible Register in a

particular memory buffer

• To use this feature in user-mode you have to fill the XCR0 register with

XSETBV instruction

• Instead for kernel mode staff, you have to fill a special MSR register: IA32_XSS

(number 0x0DA0)

• Finally a call to the XSAVE (or XSAVES if in Kernel mode) fills the buffer with

the needed information *

• Originally I planned to manual save each Intel PT MSRs after intercepting the

thread context switcher

• While analyzing the Windows 10 Context Switcher, I realized that it already

supports the XSAVE feature

• 2 solutions -> We conclude that it was not feasible in a very stable manner:

1. Find a way to hook or divert the KeSwapContext routine -> No public-

available method -> Patchguard become angry

2. Use ETW

Research still in progress!

